AKTU, LUCKNOW, U.P Study and Evaluation Scheme B. Tech in Electronics and Instrumentation, Instrumentation and Control, Applied Electronics and Instrumentation

[Effective from the session 2016-17]

YEAR 4th, SEMESTER-VII

			DFI	חומ	п	Eva	aluatio	n Sche	me		
S.	Course	SUBJECT	S		SE	SESSIONAL				dit	
No.	Code			r	r		EXAN	l	ES	Subject	re
			L	Т	P	СТ	TA	Tot	E	Total	0
								al			
THE	ORY SUBJE	CTS									
1.	NOE-07*	Open Elective-I**	3	1	0	30	20	50	100	150	4
2.	NIC-03*	Departmental Elective-III	3	1	0	30	20	50	100	150	4
3.	NIC-701	Control System II	3	1	0	30	20	50	100	150	4
4.	NIC-702	Telemetry Principles	3	1	0	30	20	50	100	150	4
5.	NIC-703	Computerized Process	3	1	0	30	20	50	100	150	4
		Control									
6.	AUC-001	*Human Values &	2	0	0	15	10	25	50	75	-
		Professional Ethics									
PRA	CTICAL/DI	ESIGN/DRAWING	•				•	•	•		
7.	NIC-751	Control System Lab - II	0	0	2	-	20	20	30	50	1
8.	NIC-752	Telemetry Lab	0	0	3	-	20	20	30	50	2
9.	NIC-753	Industrial Training Viva-	0	0	2	-	50	50	-	50	1
		Voce									
10.	NIC-754	Project	0	0	2	-	50	50	-	50	1
11.	NGP-701	General Proficiency	-	-	-	-	-	50	-	50	1
		Total	15	5	9	150	240	440	560	1000	26

**** Open Electives-I**

- 1. NOE 071 Entrepreneurship Development
- 2. NOE 072 Quality Management
- 3. NOE 073 Operation Research
- 4. NOE 074 Introduction to Biotechnology

AKTU, LUCKNOW, U.P Study and Evaluation Scheme B. Tech in Electronics and Instrumentation, Instrumentation and Control, Applied Electronics and Instrumentation [Effective from the session 2016-17]

YEAR 4th, SEMESTER-VIII

			DE	DI	OD	Ev	aluatio	on Sche	eme		
S	Course	SUDIECT	IL	C C	JD	SESSIONAL					it
D.	Course	SUDJECI	B			EXAM.			ES	Subject	red
190.	Code		L	Τ	Р	СТ	TA	Tot	Ε	Total	Ü
								al			
THE	ORY SUBJE	ECTS									
1.	NOE-08*	Open Elective-II**	3	1	0	30	20	50	100	150	4
2.	NIC-04*	Departmental Elective-IV	3	1	0	30	20	50	100	150	4
3.	NIC-801	Optimal Control Systems	3	1	0	30	20	50	100	150	4
4.	NIC-802	Biomedical	3	1	0	30	20	50	100	150	4
		Instrumentation									
5.	AUC-001	*Human Values &	2	0	0	15	10	25	50	75	-
		Professional Ethics									
PRACTICAL/DESIGN/DRAWING			•	•	•						
6.	NIC-851	Project	0	0	12	-	100	100	250	350	8
7.	NGP 801	General Proficiency	-	-	-	-	-	50	-	50	1
		Total	12	4	12	120	180	350	650	1000	24

**** Open Electives-II**

- 1. NOE-081 Non Conventional Energy Resources
- 2. NOE-082 Non Linear Dynamic Systems
- 3. NOE-083 Product Development
- 4. NOE-084 Automation and Robotics

LIST OF ELECTIVES:

Electiv	ve – III	NIC03	* Departmental Elective III
1.	NIC-031		Optical Instrumentation
2.	NIC-032		Power Plant Instrumentation
3.	NEC-033/NIC	C-033	Voice Over IP
4.	NEC-034/NIC	C-034	Filter Design
5.	NEC-035/NIC	C-035	Applied Fuzzy Electronic Systems
Electiv	ve – IV	NIC 04	4* Departmental Elective IV

1.	NIC-041	Biomedical Signal Processing
2.	NIC-042	Analytical Instrumentation
3.	NIC-043	Micro and Smart Systems
4.	NEC-042/NIC-044	Digital System Design using VHDL
5.	NEC-044/NIC-045	Advance Display Technologies & Systems

SYLLABUS

	NIC-701 CONTROL SYSTEM II	3 1 0
Unit	Topics	Lectures
Ι	Sampling and Signal Conversion:	
	Sampled-Data Control Systems, Digital to Analog Conversion, Sample and	4
	Hold operations, Sample and Hold Devices, frequency-Domain	
	Characteristic of Zero order Hold.	
	The Z-Transform:	
	Linear Difference equations, The Pulse Response, The Definition of the Z-	
	transform, Relationship between the Laplace transform and the Z-	
	transform, Relationship between S-plane and the Z-plane, The constant-	6
	Damping Loci, The constant- Frequency Loci, The constant-Damping	
	Ratio Loci, The Inverse Z-Transform, Theorems of the Z-transform,	
	Limitations of the Z-transform, Application of the Z-transform ,Stability	
	Analysis, Systems with Dead-Time.	
II	Transfer Functions, Block Diagrams, and Signal flow Graphs The Pulse	
	Transfer Function and The Z-Transfer Function, The Pulse Transfer	6
	Function of the Zero-Order Hold and the Relation Between $G(s)$ and	
	G(z), Closed loop systems, The Sampled Signal flow Graph, The	
	Modified Z-transfer function, Multirate Discrete Data System. Transform	
	Design of Digital Controls Design of position Servo Design Specifications,	
	Design on the W- plane, Design of the W-plane, the Digital PID Controllers.	4
III	State Space Analysis of Sampled Data Systems Discrete time state equations.	
	Similarity Transformations, The Cayley-Hamilton Theorem, Realization of	7
	Pulse Transfer function, State Equations for sampled Data Systems,	
	Concepts of Controllability and Observability, Liapunov Stability Analysis	
	Systems with Dead time.	
IV	Design of digital controls using State Space analysis Formulation of the	
	optimal control Problem Optimal State Regulator, Use of State	6
	Regulator results, Eigen value Assignment by State feedback, State	
	observers Stochastic optimal State Estimation.	
V	Mechanization of Control algorithms Using Micro Processors General	_
	Description of Microcontrollers, Digital quantization, Microprocessor	7
	based Position Control System.	

Text Book:

- 1. M. Gopal, "Digital Control Engineering", New Age International Publishers.
- 2. B.C. Kuo ,"Digital Control Systems", Oxford University Press.

	NIC-702 TELEMETRY PRINCIPLES	3 1 0
Unit	Topics	Lectures
Ι	Introduction to Telemetry Principles: Basic System, Classification, Non	4
	electrical telemetry systems, Voltage and current Telemetry systems,	
	Frequency Telemetering, Power line carrier Communication.	
II	Multiplexed System: Frequency Division Multiplex System- FDM,	10
	IRIG Standards, FM circuits, Phase Modulation Circuits, Receiving end,	
	Phase Locked Local Loop, Mixers. Time Division Multiplexed System -	
	TDM/PAM system, PAM/ PM systems, TDM- PCM System, Digital	
	Multiplexer, PCM Reception, Coding for varying level, DPCM, Standards.	
III	Modems: Modems Introduction, QAM, modem protocol.	4
IV	Transmitter and Receiver: Transmitters, Transmission Techniques,	10
	Inter stage Coupling, Receiver Antennas: The Ideal structure, dipoles,	
	arrays, current distribution and design consideration, Microwave Antennas.	
V	Filters: Polynomial, Filters, Active RC Filters, Universal Filter	2
	Circuits, Switched Capacitor Filters, Digital Filters	8
	Basics of Satellite and Fiber Optic Telemetry	2
	Data Acquisition Systems (DAS), µP based DAS, Remote Control	

1. D Patranabis, Telemetry Principle; TMH Ed 1 1999.

	NIC-703 COMPUTERISED PROCESS CONTROL	3 1 0
Unit	Topics	Lectures
Ι	Basics of Computer-Aided Process Control: Role of computers in process	8
	control, Elements of a computer aided Process control System,	
	Classification of a Computer -Aided Process Control System Computer-	
	Aided Process-control Architecture: Centralized Control Systems,	
	Distributed control Systems, Hierarchical Computer control Systems.	
	Economics of Computer-Aided Process control. Benefits of using	
	Computers in a Process control.	
	Process related Interfaces: Analog Interfaces, Digital Interfaces, Pulse	
	Interfaces, Standard Interfaces	
II	Industrial communication System: Communication Networking, Industrial	8
	communication Systems, Data Transfer Techniques, Computer Aided	
	Process control software, Types of Computer control Process Software, Real	
	Time Operating System.	
III	Process Modelling for computerized Process control: Process model,	8
	Physical model, Control Model, Process modeling.	
	Modelling Procedure: Goals Definition, Information Preparation, Model	
	Formulation, Solution Finding, Results Analysis, Model Validation	
IV	Advanced Strategies For Computerised Process control: Cascade Control,	8
	Predictive control, Adaptive Control, Inferential control, Intelligent Control,	
	Statistical control.	
V	Examples of Computerized Process Control: Electric Oven Temperature	8
	Control, Reheat Furnace Temperature control, Thickness and Flatness	
	control System for metal Rolling, Computer-Aided control of Electric	
	Power Generation Plant.	

1. S. K. Singh, "Computer Aided Process control", PHI.

Reference Books:

- 2. C. L. Smith, "Digital computer Process Control", Ident Educational Publishers.
- 3. C. D. Johnson, "Process Control Instrumentation Technology", PHI.
- 4. Krishan Kant, "Computer Based Industrial Control"
- 5. Pradeep B. Deshpande & Raymond H. Ash, "Element of Computer Process Control with Advance Control Applications", Instrument Society of America, 1981.
- 6. C. M. Houpis & G. B. Lamond, "Digital Control System Theory", Tata McGraw Hill.

NIC 751 CONTROL SYSTEM LAB II

- 1. Discrete Time LTI model
- 2. Discrete pole locations & transients response Small damping ($\varepsilon = 0.1 \text{ W}_n = 4\pi/5\text{T}$) Medium damping ($\varepsilon = 0.4 \text{ W}_n = 11 \pi/5\text{T}$) Large damping ($\varepsilon = 0.8 \text{ W}_{n} = \pi / 4\text{T}$)
- 3. Digital DC motor Speed control with PID controller
- 4. Designing Lead & Lag Compensators
- 5. Kalman Filter design
- 6. State space design for the Inverted pendulum
- 7. Consider modelling of DC Motor shown in figure

The motor Physical Parameters are

- (J) Moment of inertia of the rotor 0.01 kg.m²
- Motor viscous friction constant 0.1 N.m.s (b)
- (Ke) Electromotive force constant 0.01 V/rad/sec
- (Kt) Motor torque constant 0.01 N.m/Amp
- (R) Electric resistance
- 1 Ohm Electric inductance 0.5 H

and the design requirements are

(L)

- 1. Settling time less than 2 seconds
- 2. Overshoot less than 5%
- 3. Steady-state error less than 1%

Write a Matlab Program to find

- LTI characteristics я
- b PID control response
- 8. Write a program to check for controllability and observability for the second order system
- 9. Write a MATLAB program to compute and display the poles and zeros, to compute and display the factored form, and to generate the pole-zero plot of a z-transform that is a ratio of two polynomials in z - 1. Using this program, Find and plot the poles and zeroes of G(z). Also Find the radius of the resulting poles.
- 10. To design feedback and feedforward compensators to regulate the temperature of a chemical reactor through a heat exchanger.

NIC 752 TELEMETRY LAB

Minimum of 10 experiments to be performed

- 1. Measurement of Temperature Using RTD/ Thermister and amplification to an appropriate level suitable for Tele transmission.
- 2. Sampling through a S/H Circuit and reconstruction of the sampled signal. Observe the effect of sampling rate & the width of the sampling pulses.
- 3. Realization of PCM signal using ADC and reconstruction using DAC using 4-bit/8 bit systems. Observe the Quantization noise in each case.
- 4. Fabricate and test a PRBS Generator.
- 5. Realization of data in different formats such as NRZ-L, NRZ-M and NRZ-S.
- 6. Clock recovery circuit from NRZ-L data using PLL.
- 7. Manchester coding & decoding (Biphase L) of NRZ-L Data.
- 8. Coding and decoding NRZ-L into URL-L (Unipolar return to Zero coding).
- 9. ASK Modulation and Detection
- 10. FSK Modulation and Detection
- 11. PSK Modulation and Detection.
- 12. Error introduction, Error Detection & Correction using Hamming Code.
- 13. Amplitude modulation and Detection of signal obtained from experiment no.1.

Elective – III

	NIC-031 OPTICAL INSTRUMENTATION	3 1 0
Unit	Topics	Lectures
Ι	Light Sourcing, Transmitting and Receiving Concept of Light, Classification of different phenomenon based on theories of light, Basic light sources and its Characterization, Polarization , Coherent and Incoherent sources, Grating theory ,Application of diffraction grating, Electro-optic effect, Acousto-optic effect and Magneto-optic effect.	8
II	Opto –Electronic devices and Optical Components Photo diode, PIN, Photo-Conductors, Solar cells, ,Phototransistors, Materials used to fabricate LEDs and Lasers Design of LED for Optical communication, Response times of LEDs ,LED drive circuitry, Lasers Classification :Ruby lasers, Neodymium Lasers, He- Ne Lasers, CO2 Lasers, Dye Lasers, Semiconductors Lasers, Lasers Applications.	8
III	Interferometry Interference effect, Radio-metry, types of interference phenomenon and its Application, Michelson's Interferometer and its application Fabry-perot interferometer, Refractometer, Rayleigh's interferometers, Spectrographs and Monochromators, Spectrophotometers, Calorimeters, Medical Optical Instruments	8
IV	 Holography: Principle of Holography, On-axis and Off axis Holography, Application of Holography, Optical data storage. Optical Fiber Sensors: Active and passive optical fiber sensor, Intensity modulated, displacement type sensors, Multimode active optical fiber sensor (Micro bend sensor)Single Mode fiber sensor-Phase Modulates and polarization sensors 	8
V	Fiber optic fundamentals and Measurements: Fundamental of Fibers, Fiber Optic Communication system, Optical Time domain Reflectometer (OTDR), Time domain dispersion measurement, Frequency Domain dispersion measurement, Laser Doppler velocimeter,	8

Text Book:

- 1. J. Wilson & J. F. B. Hawkes, "Optoelectronics: An Introduction" PHI/ Pearson
- 2. Rajpal S. Sirohi "Wave Optics and its Application", Hyderabad, Orient longman Ltd.
- 3. A. Yariv, "Optical Electronics", C. B. S. Collage Publishing, New York, 1985.

	NIC-032 POWER PLANT INSTRUMENTATION	3 1 0
Unit	Topics	Lectures
Ι	Energy sources, their availability, worldwide energy production, energy	8
	scenario of India. Introduction to Power generation- Classification: Renewable	
	and non-renewable energy generation resources.	
	Renewable: small hydro; modern biomass; wind power; solar; geothermal and	
	bio-fuels.	
	Non renewable: fossil fuels (coal, oil and natural gas) and nuclear power.	
	Boiler: Types of boilers, boiler safety standards. Boiler instrumentation, control	
	and optimization, combustion control, air to fuel ratio control, three element	
	drum level control, steam temperature and pressure control, boiler interlocks,	
	sequence event recorder, data acquisition systems.	
II	Thermal Power Plant- Method of power generation, layout and energy	8
	conversion process, Types of Turbines & control, Types of Generators,	
	condensers. Types of pumps and Fans, variable speed pumps and Fans,	
	Material handling system, study of all loops-water, steam, fuel etc.	
III	Hydroelectric Power Plant- Site selection, Hydrology, Estimation electric	8
	power to be developed, classification of Hydropower plants, Types of	
	Turbines for hydroelectric power plant, pumped storage plants, storage	
	reservoir plants.	
IV	Wind Energy: Power in wind, Conversion of wind power, Aerodynamics of	8
	wind turbine, types of wind turbine, and modes of operation, power control	
	of wind turbines, Betz limit, Pitch & Yaw control, wind mill, wind pumps,	
	wind farms, different generator protections, data recording, trend analysis,	
	troubleshooting & safety.	
	Solar Energy: solar resource, solar energy conversion systems: Solar PV	
	technology: Block diagram of PV system, advantages and limitations. Solar	
	thermal energy system: Principle, solar collector and its types, solar	
	concentrator and its types, safety.	
V	Nuclear Power Plant: Nuclear power generation, control station and reactor	8
	control.	
	Comparison of various plants:	
	Comparison of thermal power plant, hydro electric power plant, wind, solar,	
	nuclear power plant on the basis of: Performance, efficiency, site selection,	
	Economics-capital and running, safety standards, pollution, effluent	
	management and handling. Power plant safety, Pollution monitoring,	
	control Sound, Air, smoke, dust, study of Electrostatic precipitator.	

- 1. G.F. Gilman, "Boiler Control Systems Engineering", ISA Publication.
- 2. P. K. Nag, "Power plant engineering", McGraw Hill.

Reference Books:

- 1. B. H. Khan, "Non-conventional energy resources", McGraw Hill.
- 2. Chetan Singh Solanki, "Renewable energy Technology", Prentice Hall Publication.
- 3. S. P. Sukhatme, "Solar Energy", Tata McGraw Hill.
- 4. G. D. Rai, "Nonconventional energy sources", Khanna Publication.

	NEC 033/NIC-033 VOICE OVER IP	3 1 0
Unit	Topic	Lectures
Ι	Introduction: Carrier-Grade, VoIP, VoIP Challenges, Overview of the IP	8
	Protocol Suite, The Internet Protocol, IP Version 6, IP Multicast, The	
	Transmission Control Protocol, The User Datagram Protocol, The Stream	
	Control Transmission Protocol, The Real-Time Transport Protocol, The RTP	
	Control Protocol, Security and Performance Optimization	
	Speech-Coding Techniques	
	A Little about Speech, Audio, and Music, Voice Sampling, Voice Quality,	
	Types of Speech Coders, Waveform Coders, Analysis-by-Synthesis Codecs,	
	G.722–Wideband Audio	
II	Signaling Protocols:	8
	H.323: Multimedia Conferencing over IP The H.323 Architecture, RAS	
	Signaling, Call Signaling, Call Scenarios, H.245 Control Signaling,	
	Conference Calls, Securing an H.323 Network.	
	The Session Initiation Protocol The SIP Architecture, Overview of SIP	
	Messaging Syntax, Examples of SIP Message Sequences, Redirect and Proxy	
	Servers, The Session Description Protocol, Usage of SDP with SIP, SIP	
	Extensions and Enhancements, Usage of SIP for Features and Services,	
	Interworking	
III	Distributed Gateways and the Softswitch Architecture	8
	Separation of Media and Call Control, Softswitch Architecture, Protocol	
	Requirements for Controlling Media Gateways, Protocols for Controlling	
	Media Gateways, MGCP, MEGACOP/H.248.1.	
IV	VoIP and SS7	8
	The SS7 Protocol Suite, SS7 Network Architecture, ISUP, Performance	
	Requirements for SS7, SIGTRAN, Interworking SS7 and VoIP Architectures	
V	Quality of Service	8
	The Need for QoS, Overview of QoS Solutions, The Resource Reservation	
	Protocol, DiffServ, Multiprotocol Label Switching, Combining QoS Solutions	

Text Books:

- 1. Richard Swale, Daniel Collins," Carrier-Grade VoIP", McGraw-Hill Education 3rd Edition,2014.
- 2. Olivier Hersent, Jean Pierre Petit, David Gurle, "IP Telephony Deploying Voice Over-IP Protocols", John Wiley & Sons Ltd, 2005

	NEC 034/NIC-034 FILTER DESIGN	3 0 1
Unit	Торіс	Lectures
Ι	Introduction: Fundamentals, Types of filters and descriptive terminology,	8
	why we use Analog Filters, Circuit elements and scaling, Circuit	
	simulation and modelling.	
	Operational amplifiers: Opamp models, Opamp slew rate, Operational	
	amplifiers with resistive feedback: Noninverting and Inverting,	
	Analyzing Opamp circuits, Block diagrams and feedback, The Voltage	
	follower, Addition and subtraction, Application of Opamp resistor	
	circuits.	
II	First order filter: Bilinear transfer functions and frequency response –	8
	Bilinear transfer function and its parts, realization of passive elements,	
	Bode plots, Active realization, The effect of A(s), cascade design.	

III	Second order low pass and band pass filters: Design parameters, Second	8
	order circuit, frequency response of low pass and band pass circuits,	
	Integrators and others biquads.	
IV	Second order filters with arbitrary transmission zeros: By using	8
	summing, By voltage feed forward, cascade design revisited.	
	Low pass filters with maximally flat magnitude: the ideal low pass filter,	
	Butterworth response, Butterworth pole locations, low pass filter	
	specifications, arbitrary transmission zeros.	
V	Low pass filter with equal ripple (Chebyshev) magnitude response: The	8
	chebyshev polynomial ,The chebyshev magnitude response, Location of	
	chebyshev poles, Comparison of maximally flat & equal-ripple	
	responses, Chebyshev filter design	
	Inverse chebyshev and cauer filters: Inverse chebyshev response, From	
	specifications to pole and zero locations, Cauer magnitude response,	
	Chebyshev rational functions, Cauer filter design.	

 Rolf. Schaumann, Haiqiao Xiao, Mac. E. Van Valkenburg, "Analog Filter Design", 2nd Indian Edition, Oxford University Press.

Reference Books:

- 1. J. Michael Jacob ,"Applications and Design with Analog Integrated Circuits", Second edition, PHI learning.
- 2. T. Deliyannis, Yichuang Sun, J.K. Fidler, "Continuous-Time Active Filter Design", CRC Press.

NEC 035/NIC-035 APPLIED FUZZY ELECTRONIC SYSTEMS		3 1 0
Unit	Торіс	Lectures
Ι	History of Fuzzy Logic, Fuzzy Sets, Possibility Distributions, Fuzzy	8
	Rules, Fuzzy Sets, Operations of Fuzzy Sets, Properties of Fuzzy	
	Sets, Geometric Interpretations of Fuzzy Sets, Possibility Theory,	
	Fuzzy Relations and their Compositions, Fuzzy Graphs, Fuzzy	
	Numbers, Functions with Fuzzy Arguments, Arithmetic Operations	
	of Fuzzy Numbers.	
II	Fuzzy Rules: Fuzzy Mapping Rule, Fuzzy Implication Rule, Fuzzy	8
	Rule Based Models for Function Approximations, Theoretical	
	Foundation of Fuzzy Mapping Rules, Types of Fuzzy Rule Based	
	Models: Mamdani Model, TSK Model, Standard Additive Model,	
	Fuzzy Implications and Approximate Reasoning: Propositional	
	Logic, First Order Predicate Calculus, Fuzzy Implications,	

	Approximate Reasoning, Criteria and Family of Fuzzy Implications,	
	Possibility vs. Probability, Probability of Fuzzy Event, Probabilistic	
	Interpretations of Fuzzy Sets, Fuzzy Measure.	
III	Uncertainty in information; Classical Sets, Fuzzy Sets and their	8
	properties; Cardinality of Classical Relations and their properties,	
	The a- Level Set, Cardinality of Fuzzy Relations and their	
	properties; Composition; Tolerance and Equivalence relationship;	
	Membership Functions; Fuzzification and Defuzzification process;	
	Fuzzy to Crisp Conversions; Lambda cuts; Extension Principle,	
	Crisp functions and its mapping, Fuzzy functions and its mapping;	
	Fuzzy Numbers; Internal Analysis in Arithmetic.	
IV	Approximate method of Extension, Vertex Method, DSW	8
	Algorithm, and Restricted DSW Algorithm and their comparison,	
	Classical Predicate Logic; Fuzzy Logic; Approximate Reasoning;	
	Fuzzy Tautologies, Contradictions, Equivalence, and Logical Proof;	
	Fuzzy Rule Based Systems, Models of Fuzzy AND, OR, and	
	Inverter; Fuzzy Algebra; Truth Tables; Fuzzy Functions; Concept of	
	Fuzzy Logic Circuits; Fuzzy Flip- Flop; Fuzzy Logic Circuits in	
	Current Mode, Furry Numbers.	
V	Fuzzy Logic in Control Engineering: Fundamental Issues in Control	8
	Engineering, Control Design Process, Semiformal Aspects of	
	Design Process, Mamdani Architecture of Fuzzy Control, The	
	Sugeno-Takagi Architecture. Fuzzy Logic in Hierarchical Control	
	Architecture, Historical Overview and Reflections on Mamdani's	
	Approach, Analysis of Fuzzy Control System via Lyapunov's Direct	
	Method, Linguistic Approach to the analysis of Fuzzy Control	
	System, Parameter Plane Theory of Stability, Takagi-Sugeno-Kang	
	Model Of Stability Analysis.	

- 1. John Yen, Reza Langari, "Fuzzy Logic: Intellegent Control and Information", Pearson Publication.
- 2. Ahmad M. Ibrahim, "Introduction to Applied Fuzzy Electronics", Prentice Hall Publication.
- 3. Ahmad M. Ibrahim, "Fuzzy Logic for Embedded Systems Applications", Newnes Publications.
- 4. Witold Pedrycz, Fernando Gomide, "Fuzzy Systems Engineering: Toward Human-Centric Computing", John Wiley Publications.

NIC 801 OPTIMAL CONTROL SYSTEMS		3 1 0
Unit	Торіс	Lectures
Ι	General Mathematical Procedures:	8
	Formulation of the optimal control Problem, Calculus of	
	variations, Minimum principle, Dynamic Programming, Numerical	
	Solution of Two-point Boundary value problem.	
Π	Optimal Feedback Control:	8
	Discrete-Time linear State regulator, Continuous-Time Linear	
	state Regulator results of solve other linear problems, Suboptimal	
	Linear regulators, Minimum-time Control of Linear Time-Invariant	
	System.	
III	Stochastic Optimal Linear Estimation and Control	8
	Stochastic processes and linear systems, Optimal Estimation	
	for Linear Discrete time Systems Stochastic Optimal Linear	
	Regulator,	
IV	Microprocessor and DSP control Basic computer	8
	Architecture, Microprocessor Control of Control System, Single	
	Board Controllers with Custom Designed Chips, Digital Signal	
	Processors,	
V	Effect of finite World Length and Quantization on Controllability	8
	and Closed Loop –Pole Placement, Effects of Quantization, and	
	Time Delays in Microprocessor Based control systems.	

- 1. M. Gopal, "Modern Control Engineering", New Age International Publishers.
- 2. B.C. Kuo, "Digital Control Systems", Oxford University Press

Reference Book:

1. Brain D.O. Anderson, John B. Moore, "Optimal control Linear Quadratic Methods", Prentice Hall of India Private Limited

	NIC 802 BIOMEDICAL INSTRUMENTATION	3 1 0
Unit	Topic	Lectures
Ι	Introduction: Specifications of bio-medical instrumentation system,	8
	Man-Instrumentation system Components, Problems encountered in	
	measuring a living system. Basics of Anatomy and Physiology of	
	the body.	
	Bioelectric potentials: Resting and action potentials, propagation of	
	action potential, The Physiological potentials – ECG, EEG, EMG,	
	ERG, EOG and Evoked responses.	
	Electrodes and Transducers: Electrode theory, Biopotential	
	Electrodes – Surface electrodes, Needle electrodes, Microelectrodes,	
	Biomedical Transducer.	
II	Cardiovascular Measurements: Electrocardiography – ECG	8
	amplifiers, Electrodes and Leads, ECG –Single channel, Three	
	channel, Vector Cardiographs, ECG System for Stresses testing,	
	Holter recording, Blood pressure measurement, Heart sound	
	measurement. Pacemakers and Defibrillators.	
	Patient Care & Monitoring: Elements of intensive care monitoring,	
	displays, diagnosis, Calibration & Reparability of patient monitoring	
	equipment.	
III	Respiratory system Measurements: Physiology of Respiratory	8
	system. Measurement of breathing mechanism – Spirometer.	
	Respiratory Therapy equipments: Inhalators, Ventilators &	
	Respirators, Humidifiers, and Nebulizers & Aspirators.	
	Nervous System Measurements: Physiology of nervous system,	
	Neuronal communication, Neuronal firing measurements.	
IV	Ophthalmology Instruments: Electroretinogram, Electro -	8
	oculogram. Ophthalmoscope. Tonometer for eve pressure	U U
	measurement.	
	Diagnostic techniques: Ultrasonic diagnosis, Eco - cardiography,	
	Eco-encephalography, Ophthalmic scans, X-ray & Radio-isotope	
	diagnosis and therapy, CAT-Scan, Emission computerized	
	tomography, MRI.	
V	Bio-telemetry: The components of a Bio-telemetry system,	8
	Implantable units, Telemetry for ECG measurements during	
	exercise, for Emergency patient monitoring.	
	Prosthetic Devices and Therapies: Hearing Aides, Myoelectric Arm,	
	Dia-thermy, Laser applications in medicine.	

- 1. R. S. Khandpur, "Biomedical Instrumentation", TMH
- S. K. Venkata Ram, "Bio-Medical Electronics &Instrumentation (Revised)", Galgotia.
 J. G. Webster (editor), "Medical Instrumentation Application & Design", 3rd Ed

WILEY, India

Reference Book:

- 1. Cromwell, "Biomedical Instrumentation and Measurements" PHI
- 2. J. G. Webster, "Bio- Instrumentation", Wiley
- 3. S. Ananthi, "A Text Book of Medical Instruments", New Age International
- 4. Carr & Brown, "Introduction to Biomedical Equipment Technology", Pearson
- 5. Pandey & Kumar, "Biomedical Electronics and Instrumentation", Kataria

Elective – IV

	NIC 041 BIOMEDICAL SIGNAL PROCESSING	3 1 0
Unit	Торіс	Lectures
Ι	Introduction to Bio-Medical Signals: Classification, Acquisition and Difficulties during Acquisition. Basics of Electrocardiography, Electroencephalography, Electromyography & electro-retinography Role of Computers in the Analysis, Processing, Monitoring & Control and image reconstruction in bio-medical field.	8
Π	ECG: Measurement of Amplitude and Time Intervals, QRS Detection (Different Methods), ST Segment Analysis, Removal of Baseline Wander And Power line Interferences, Arrhythmia Analysis, Portable Arrhythmia Monitors.	8
III	Data Reduction: Turning Point algorithm, AZTEC Algorithm, Fan Algorithm, Huffman and Modified Huffman Coding, Run Length Coding.	8
IV	 EEG: Neurological Signal Processing, EEG characteristic, linear prediction theory, Sleep EEG, Dynamics of Sleep/Wake transition. Study of pattern of brain waves, Epilepsy-Transition, detection and Estimation. EEG Analysis By Spectral Estimation: The Bt Method, Periodogram, Maximum Entropy Method & AR Method, Moving Average Method. The ARMA Methods, Maximum Likelihood Method. 	8
V	EP Estimation: by Signal Averaging, Adaptive Filtering:- General Structures of Adaptive filters, LMS Adaptive Filter, Adaptive Noise Cancelling, Wavelet Detection:- Introduction, Detection By Structural features, Matched Filtering, Adaptive Wavelet Detection, Detection of Overlapping Wavelets.	8

Text Books:

- 1. Willis J. Tomkin, "Biomedical Digital Signal Processing", PHI.
- 2. D. C. Reddy, "Biomedical Signal Processing", McGraw Hill
- 3. Crommwell,Weibel and Pfeifer, "Biomedical Instrumentation and Measurement", PHI

Reference Books:

- 1. Arnon Cohen, "Biomedical Signal Processing (volume-I)", Licrc Press\
- 2. Rangaraj M. Rangayyan, "Biomedical Signal Analysis A Case Study Approach", John Wiley and Sons Inc.\
- 3. John G. Webster, "Medical instrumentation Application and Design", John Wiley & Sons Inc.

	NIC 042 ANALYTICAL INSTRUMENTATION	3 1 0
Unit	Торіс	Lectures
Ι	UV – Visible Spectroscopy: Introduction, Electromagnetic	8
	Radiation, Laws relating to absorption radiation, Absorption	
	Instruments, Ultraviolet and visible absorption spectroscopy,	
	Calorimeters, Double Beam spectrophotometer (Optical Diagram	
	& Block Diagram) Microprocessor based Spectrophotometer	
	(Block Diagram)	
II	Infrared Spectroscopy, Basic Components of IR	8
	Spectrophotometers, Type of Infrared Spectrophotometers, Sample	
	Handling Techniques.	
III	Flame photometers: principle, constructional details of flame	8
	photometers, types of flame photometers, types of flame	
	photometers, clinical flame photometers, accessories for flame	
	photometer, expression for concentration, interferences in flame	
	photometry, procedure for determinations.	
	Atomic Absorption Spectrometers: Atomic Absorption	
	Spectroscopy, Atomic Absorption Instrumentation, Sources of	
	interferences, meter scale.	
IV	Mass Spectrometers: Basic Mass Spectrometer, Principle of	8
	operation, Type of Mass Spectrometers, components of Mass	
	Spectrometers, inductively coupled plasma-mass spectrometer,	
	trapped ion analyzers, ion cyclotron resonance (ICR) mass	
	spectrometer, quadruple ion trap mass spectrometer, applications of	
	mass spectrometry, gas chromatograph-mass spectrometer, liquid	
	chromatograph-mass spectrometer, tandem mass spectrometry	
	(MS/MS).	
V	Nuclear Magnetic Resonance (NMR) Spectroscopy, Principle of	8
	NMR, types of NMR spectrometers, constructional details of NMR	
	spectrometer, variation T-60A NMR spectrometer, sensitivity	
	enhancement for analytical NMR-spectroscopy, Fourier transform	
	NMR spectroscopy.	

- 1. R. S. Kandpur, "Handbook Of Analytical Instruments", TMH 2nd Edition,
- 2. Willard, Merritt, Dean and Settle, "Instrumental Methods of Analysis", 7th Edition, CBS Publishers.

	NIC 043 MICRO AND SMART SYSTEMS	3 1 0
Unit	Торіс	Lectures
Ι	Introduction, Why miniaturization?, Microsystems versus MEMS,	8
	Why micro fabrication?, smart materials, structures and systems,	
	integrated Microsystems, applications of smart materials and	
	Microsystems,.	
II	Micro sensors, actuators, systems and smart materials: Silicon	8
	capacitive accelerometer, piezoresistive pressure sensor,	
	conductometric gas sensor, an electrostatic combo-drive, a	
	magnetic microrelay, portable blood analyzer, piezoelectric inkjet	
	print head, micromirror array for video projection, smart materials	
	and systems.	
III	Micromachining technologies: silicon as a material for micro	8
	machining, thin film deposition, lithography, etching, silicon	
	micromachining, specialized materials for Microsystems, advanced	
	processes for micro fabrication.	
IV	Modeling of solids in Microsystems: Bar, beam, energy methods for	8
	elastic bodies, heterogeneous layered beams, bimorph effect,	
	residual stress and stress gradients, poisson effect and the anticlastic	
	curvature of beams, torsion of beams and shear stresses, dealing	
	with large displacements, In-plane stresses.	
	Modelling of coupled electromechanical systems: electrostatics,	
	Coupled Electro-mechanics: statics, stability and pull-in	
	phenomenon, dynamics. Squeezed film effects in electro-	
	mechanics.	
V	Integration of micro and smart systems: integration of Microsystems	8
	and microelectronics, microsystems packaging, case studies of	
	integrated Microsystems, case study of a smart-structure in vibration	
	control.	
	Scaling effects in Microsystems: scaling in: mechanical domain,	
	electrostatic domain, magnetic domain, diffusion, effects in the	
	optical domain, biochemical phenomena.	

Text book:

1. G. K. Ananthasuresh, K. J. Vinoy, S. Gopalakrishnan, K. N. Bhat and V. K. Atre, "Micro and smart systems", Wiley India, 2010.

Unit	Торіс	Lectures
Ι	Introduction to VHDL, reserve words, structures, modeling, objects, data	8
	type and operators, sequential statements and processes, sequential	
	modeling and attributes, conditional assignment, concatenation and case,	
	array loops and assert statements, subprograms.	
II	Digital System Design Automation- Abstraction Levels, System level	8
	design flow, RTL design flow, VHDL.	
	RTL Design with VHDL - Basic structures of VHDL, Combinational	
	circuits, Sequential circuits, Writing Test benches, Synthesis issues, VHDL	
	Essential Terminologies	
	VHDL Constructs for Structures and Hierarchy Descriptions - Basic	
	Components, Component Instantiations, Iterative networks, Binding	
	Alternatives, Association methods, generic Parameters, Design	
	Configuration	
III	Concurrent Constructs for RT level Descriptions - Concurrent Signal	8
	Assignments, Guarded signal assignment	
	Sequential Constructs for RT level Descriptions - Process Statement,	
	Sequential WAIT statement, VHDL Subprograms, VHDL library Structure,	
	Packaging Utilities and Components, Sequential Statements.	
	VHDL language Utilities - Type Declarations and Usage, VHDL	
	Operators, Operator and Subprogram overloading, Other TYPES and TYPE	
	- related issues, Predefined Attributes	
IV	VHDL Signal Model - Characterizing hardware languages, Signal	8
	Assignments, Concurrent and Sequential Assignments, Multiple Concurrent	
	Drivers Standard Resolution.	
V	Hardware Cores and Models - Synthesis rules and styles, Memory and	8
	Queue Structures, Arithmetic Cores, Components with Separate Control	
	and Data parts.	
	Core Design Test and Testability - Issues Related to Design Test, Simple	
	Test benches.	

- 1. Z. Navabi, "VHDL-Modular Design and Synthesis of cores and Systems", TMH -3^{rd} Edition.
- 2. R.D.M. Hunter, T. T. Johnson, "Introduction to VHDL" Spriger Publication, 2010.

Reference Books:

- 1. C. H. Roth, "Digital System Design using VHDL", PWS Publishing
- 2. Douglas Perry, "VHDL- Programming by examples", MGH

Unit	Торіс	Lectures
Ι	Properties of Light, Geometric Optics, Optical Modulation; Vision and	8
	Perception: Anatomy of Eye, Light Detection and Sensitivity, Spatial	
	Vision and Pattern Perception, Binocular Vision and Depth Perception;	
	Driving Displays: Direct Drive, Multiplex and Passive Matrix, Active	
	Matrix Driving, Panel Interfaces, Graphic Controllers, Signal Processing	
	Mechanism; Power Supply: Fundamentals, Power Supply Sequencing.	
II	Display Glasses, Inorganic Semiconductor TFT Technology, Organic TFT	8
	Technology; Transparent Conductors, Patterning Processes:	
	Photolithography for Thin Film LCD, Wet Etching, Dry Etching; Flexible	
	Displays: Attributes, Technologies Compatible with Flexible Substrate and	
	Applications, TFT Signal Processing Techniques; Touch Screen	
	Technologies: Introduction, Coatings, Adhesive, Interfaces with Computer	
	Mechanism.	
III	Inorganic Phosphors, Cathode Ray Tubes, Vacuum Florescent Displays,	8
	Filed Emission Displays; Plasma Display Panels, LED Display Panels;	
	Inorganic Electroluminescent Displays: Thin Film Electroluminescent	
	Displays, AC Powder Electroluminescent Displays; Organic	
	Electroluminescent Displays: OLEDs, Active Matrix for OLED Displays;	
	Liquid Crystal Displays: Fundamentals and Materials, Properties of Liquid	
	Crystals, Optics and Modeling of Liquid Crystals; LCD Device	
	Technology: Twisted Numeric and Super twisted Numeric Displays,	
	Smectic LCD Modes. In-Plane Switching Technology. Vertical Aligned	
	Nematic LCD Technology, Bistable LCDs, Cholesteric Reflective	
	Displays; LCD Addressing, LCD Backlight and Films, LCD Production,	
	Flexoelectro-Optic LCDs.	
IV	Paper like and Low Power Displays: Colorant Transposition Displays.	8
	MEMs Based Displays, 3-D Displays, 3-D Cinema Technology,	
	Autostereoscopic 3-D Technology, Volumetric and 3-D Volumetric	
	Display Technology, Holographic 3-D Technology; Mobile Displays:	
	Trans-reflective Displays for Mobile Devices Liquid Crystal Optics for	
	Mobile Displays. Energy Aspects of Mobile Display Technology.	
V	Microdisplay Technologies: Liquid Crystals on Silicon Reflective	8
	Microdisplay Transmissive Liquid Crystal Microdisplay MEMs	C
	Microdisplay, DLP Projection Technology: Microdisplay Applications:	
	Projection Systems Head Worn Displays' Electronic View Finders	
	Multifocas Displays Occlusion Displays Cognitive Engineering and	
	Information Displays: Display Metrology Standard Measurement	
	Procedures Advanced Measurement Procedures: Spatial Effects Temporal	
	Effects Viewing Angle Ambient Light: Display Technology Dependent	
	Issues Standards and Patterns Green Technologies in Display	
	Engineering	
	Engineering.	

1. Janglin Chen, Wayne Cranton, Mark Fihn, "Handbook of Visual Display Technology", Springer Publication.