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Abstract  Quantitative traits exhibit continuous variation, indicating their control 
through multiple genes. Segregating populations are used to mine out associations 
between phenotypic and genotypic variations. Phenotyping performed for a spe-
cific trait and its variation in the population is justified with genotypic variation 
obtained through genetic markers application. A snapshot of genotypic variation is 
strictly dependent on the number and density of the markers applied. Parental and 
marker information is required to correlate genetic and phenotypic data for quanti-
tative trait loci (QTL) analysis. For many years (now becoming obsolete), it has 
been of core importance to identify QTL with such methodology. Failure had to be 
faced by the researcher because the DNA region identified for phenotypic variation 
was much wider, and needed to be narrowed down by further dense marker appli-
cation in that area to obtain required and accurate results. Nowadays the focus is 
on high-throughput technologies to obtain genome-wide resolution: high-through-
put sequencing (HTS) is one of them. A comprehensive map of genomic variations 
can be produced with resequencing or reference genome sequences. Along with 
expression profiling, new molecular markers can be searched out with QTL analy-
sis. Genomic-assisted breeding by studying the evolutionary variations in crops 
has many applied aspects as well. As compared to the conventional biparental 
population, presently the focus is on raising multiparent advanced generation 
inter-cross (MAGIC) populations to explore the genetic basis of quantitative  
traits. Probabilities of alleles of interest across the whole genome are calculated 
through the Hidden Markov Model (HMM). Different software packages (such as 
R-package, Qgene) are used for the estimates. Such whole-genome approaches in 
QTL analysis are a powerful and recently used technique. In this chapter, all these 
recent and modified modern techniques are reviewed with the most recent upcom-
ing details. Traditional and modern QTL analyses have clearly been differentiated 
on applicable grounds.

Keywords  QTL • Genotyping • Phenotyping • Mapping • Next-generation 
sequencing
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1  �Introduction

Plant breeding is the core area to develop genetic variations by which required traits 
are incorporated through selection. Traits of interest such as yield and biotic and 
abiotic stress resistances often are under the influence of more than one gene. Hence, 
to unravel the segregation pattern of such polygenic inheritance is of vital impor-
tance. The phenotype exhibited by such traits might be the aggregated action of 
many genes and the environment. Such assessable phenotypes have a continuous 
distribution pattern among individuals. The segregation pattern of such traits has 
previously been studied through simple statistical tools. At that time, by the involve-
ment of the molecular markers (such as RFLPs, RAPDs, or SSRs) and visual 
measurement it became possible to have two types of expression (genotypic and 
phenotypic) of the examined individuals. Polymorphism shown by the molecular 
markers (genotypic variation) and through the recorded phenotypic variations 
compelled researchers to detect the association of genotypic variation with pheno-
typic patterns. To probe the segregation of required polygenic traits, biparental popu-
lations with a high number of individuals were developed. Before going into further 
details of such phenomena, we should know more about quantitative trait loci (QTL).

1.1  �Quantitative Trait Loci

Asins (2002) reviewed that concepts of quantitative trait loci (QTL) detection had 
been developed from the work of Sax (1923). The acronym QTL was first coined by 
Geldermann (1975), reviewed by Slate (2005). The region of DNA responsible for 
influencing a trait that is recorded on a linear (continuous) scale is called a QTL. The 
expression of a quantitative trait is regulated by hundreds or even thousands of such 
QTLs (Mackay et al. 2009). On the basis of DNA markers positioned on a linkage 
map, QTLs are allotted on a chromosome in the vicinity where the statistical 
probability is significant. As DNA markers are not affected by the environment, 
after detecting their polymorphism, these can be used as a tool in mapping QTL. 
Quantitative traits can have varying phenotypic concentration depending upon the 
allelic diversity at a QTL region, and the functional markers found associated with 
these QTLs established the importance of QTL analysis. Thus, polygenic traits that 
could hardly be analyzed by the utilization of customary breeding methods could 
easily be labeled with DNA markers.

1.2  �Essentiality of QTL Analysis

Because QTL is the region flanked by two markers (Erickson et  al. 2004), it is 
obligatory to detect the linkage between the marker and QTL.  Here mapping 
becomes useful, to arrange the markers, genes, or QTLs in a sequence on the 
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chromosome, highlighting the relative distance among them (Touré et  al. 2000). 
When genes or QTLs linked with traits of interest are to be detected, it necessitates 
the construction of such maps. Without finding the association between the trait of 
interest and QTL, it is hard to avail the genetic diversity. By increasing the DNA 
marker density on the chromosome, a detailed genetic map can be produced. These 
maps created the importance of present-day QTL mapping (Doerge 2002). Narro
wing down the distance (by increasing the number) between the markers and the 
QTL, a stronger linkage between marker and trait can thus be detected. The stronger 
the marker–trait linkage, the more authenticated the usage will be. With the help of 
DNA markers, it seems very important to detect the QTL linked with the trait of 
interest if we want to utilize that character in further breeding strategies.

1.3  �Principle of QTL Analysis

QTL analysis is devised on the principle that genes and markers which segregate 
during meiosis, if tightly linked, must be transmitted together from parent to prog-
eny (Collard et al. 2005). As a quantitative trait is the expression of many genes at 
the same time, there must be a region or locus (QTL) that if found linked with mark-
ers can thus be analyzed for further benefits. The development of a segregating 
population first and then the detection of marker–trait association with the help of 
genetic and phenotypic profiles are basic components of QTL analysis.

2  �Methodology Involved

The science of quantitative genetics has been predominantly occupied by biometric 
mathematics. Sophisticated statistical tools are involved to extract and correlate the 
variation in genotypic and phenotypic diversity among individuals. QTL analysis 
can be performed if we have the following information:

	1.	 A model segregating the population in which a QTL for the required trait is to be 
detected.

	2.	 Genetic dissection of the population with markers.
	3.	 A record of phenotypic variations for the trait of interest.
	4.	 Software packages to depict marker–trait association.

2.1  �Mapping Population

Breeding populations differ from natural populations because they are selected 
according to the breeders’ interests. Based on required traits, the genetic properties 
of breeding population are highly confined and focused. All breeding disciplines 
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obey a general pattern of creating new genotypic variations. Crossing the lines with 
required traits has a high probability of detecting a QTL (Würschum 2012). To 
study the segregation of any polygenic trait of interest, parent selection is very cru-
cial. Parents must be phenotypically evaluated and should have contrast in trait 
expression; for example, P1 (disease resistant) and P2 (disease susceptible). In self-
pollinated species, the mapping population should be initiated from highly homo
zygous (inbred) parents (Collard et  al. 2005). In cross-pollinated species, the F1 
generation can be developed by pair-crossing of heterozygous parent plants that are 
significantly different for required traits (Barrett et al. 2004). F2 populations from F1 
hybrids, backcross-derived lines, are the usual types most often programmed for 
self-pollinated species and can easily be developed in a short time. Recombinant 
inbred lines (RILs) and doubled haploid (DH) lines are also developed. RILs and 
DH lines are used if homozygous lines are to be increased without any particular 
genetic alteration (Collard et al. 2005). In QTL mapping, construction of a mapping 
population must have a strategy of creating a correlation between the strength of 
linkage and the degree of linkage disequilibrium (Gardner and Latta 2007). Linkage 
disequilibrium (LD) arises when an allele at locus A is nonrandomly associated 
with the allele at locus B.  It can befall when these two loci are unlinked (Flint-
Garcia et al. 2003) (Fig.1).

Fig. 1  Usual types of mapping population for self-pollinating species
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Based on the biparental and diverse panel, there are two basic mapping approaches, 
that is, family mapping and population mapping. Family mapping detects only a 
limited number of alleles per locus at one time. Population mapping involves a 
diverse panel of genotypes with multiple families also, and each family with a small 
family size (Myles et  al. 2009). The type of the population that should be used 
depends on the plant species, type of markers used, and the trait to be mapped (Touré 
et al. 2000).

2.2  �Genotyping

Screening of a population along with the parents with the help of DNA markers 
(polymorphic) to obtain such a diversity pattern resulting from polymorphism of the 
markers is called genotyping (Collard et al. 2005). In the pregenomic era, popula-
tions used to be screened with a few markers of any type [restriction fragment length 
polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), amplified 
fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), etc.], 
depending upon the suitability and the nature of trait segregation. The genotypic 
profile obtained by the marker analysis contains the number of markers used and  
the polymorphism shown in the population including parents. All the previous and 
present-day genotyping techniques have the same purpose: how fast and how many 
of the markers can be processed quickly. The objective of genotyping has always 
been to have the polymorphism indicated with few base differences underlying 
allelic diversity. Current aspects of genotyping are discussed in this chapter under 
the heading of modern perspectives. Instead of extracting and analyzing DNA from 
every individual of a segregating population, bulk segregation analysis can also be 
performed. Four DNA bulks, two from individuals of extreme phenotypes (e.g., 
highly susceptible and highly resistant) along with two parents are prepared. For 
this purpose, we need to scan the genotypes with intensive application of markers 
(Cheng and Chen 2010) (Fig. 2).

2.3  �Phenotyping

To dissect a trait, the genotypic variation pattern shown by markers as well as 
phenotypic diversity display are needed. A quantitative trait that is expressed in a 
continuous distribution pattern is scored, and the entire population and parents are 
screened. This method is foremost to detect a QTL when phenotypic data must be 
available. The data are usually obtained by combining multiple experiments but 
comes with unbalanced inferences (Würschum 2012), whereas balanced data sets 
are found beneficial in minimizing false-positive QTLs (Wang et al. 2012). Even 
then the phenotypic data generated without prior balanced experimental design can 
also be used for QTL detection.
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Phenotyping intensity is also a notable factor for a precise QTL analysis. High 
heritability and low bias in the measurements are prerequisites for authenticated 
QTL detection (Bradbury et  al. 2011; Liu et  al. 2012). The obtained phenotypic 
profile will contain the number of individuals in a population and parents and the 
variation in trait expression among them. With the combination of modern 
approaches in phenotyping (discussed later in the chapter) and statistical tools, it 
has become convenient to have a more detailed and accurate pattern of phenotypic 
variation in the studied trait.

2.4  �Software Used

After obtaining the genotypic and phenotypic picture of the mapping population, 
statistical tools come into use. Analysis of variance for the studied phenotypic trait 
in the population is mandatory. Sorting out linked loci and their strength of linkage 
with the phenotypic variation becomes vital. Without the aid of software packages, 
it seems impossible to handle the data produced by such extensive phenotypic and 
genotypic observations. These packages need input files that may be opened as any 
spreadsheet (Excel, SPSS, Statistica, SAS, Statistix, XLStats, etc.) software also. 
Results of marker applications and visual scoring are arranged in spreadsheet files 
and then formatted as the software requirements. The file format needed by the 
software can be found in template files of the software help manual. Most such 
software can be downloaded free from their respective websites along with their 
user manual and help files. Software that is often used in QTL mapping includes the 
following.

Fig. 2  Flowsheet presentation of genetic markers
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2.4.1  �QTL Cartographer

QTL Cartographer is used for single-marker regression and interval mapping. It can 
analyze the data set obtained from F2, inbred lines, and also from backcross-derived 
populations (Luciano et al. 2012). A useful software then results to be expressed in 
graphs. Various QTL models can be explored by generating simulation data and 
varying parameter settings. Rmap input and output files are used for creating link-
age maps. Data files are Rcross input files and input files for QTL information are 
in Rqtl format in version 1.17 (Basten et al. 2004). An updated version 2.5, along 
with a user manual, is now also available (Wang et al. 2013).

2.4.2  �MQTL

When the data set is from multiple environments, homozygous biparental progeny 
(recombinant inbred lines, doubled haploid lines), and the mapping is to be simple 
interval mapping or a simplified form of composite interval mapping, then MQTL 
software is the best choice. This software is specialized to handle large data sets 
primarily (Tinker and Mather 1995).

Nowadays there is MetaQTL, a Java package designed to analyze the combined 
data from different gene mapping experiments such as molecular markers, QTL, 
and candidate genes. This package is the assembly of various Java written programs 
executing different purposes (Veyrieras et al. 2007).

2.4.3  �MapQTL

When we are concerned with experimental population of BC1, F2, RIL, DH, and an 
outbred full-sib family in diploid species, then MapQTL V. 6 proves itself a user-
friendly choice. For easier comparison of results from advanced backcross inbred 
lines, advanced intermated inbred lines, and doubled haploids derived from F2,  
this software can be used. Combined analysis of multiple populations with simple 
experimental design along with covariance by selecting an automatic marker cofac-
tor in a single project is the key feature of this software. Extended options for QTL 
chart presentation and adjustable data exportable tables are additional functions 
(Van Ooijen et al. 2000; Van Ooijen 2004; Van Ooijen and Kyazma 2009).

2.4.4  �Joinmap

Estimation about linkage groups is the most technical task in QTL mapping. This 
software enables the user to study linkage group formation depending on indepen-
dence test logarithm of odds (LOD) score, linkage LOD score, independence test  
P value, and recombination frequency. A linkage map can be constructed after 
fixing the linkage groups. With increased key components, high-quality charts to 
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express the maps up to the required preferences can be prepared. All the map charts 
can be exported to pdf format and can also be copied to MS-Word or Excel; more-
over, the charts can be printed easily (Van Ooijen 2006).

2.4.5  �Map Manager

Older versions of the software were Map Manager Classic, Map Manager QT, Map 
Manager XP, and the latest among them was Map Manager QTX (Manly et  al. 
2001). Map Data set from the dominant markers can also be manipulated by 
Manager QTX.  It is modified and equipped with cross-platform libraries and 
designed for multiple computer platforms.

2.4.6  �QGene

This software was reported by Nelson (1997) for the analysis of marker-based large 
amounts of genomic information in which raw genetic markers were reduced to 
numerical summary statistics along with prompt graphic display of both data and 
statistics. This software can now be downloaded from the website www.qgene.org 
along with its user manual. It can handle large amounts of the genotypic and pheno-
typic data obtained from F2, F3 families, BCF1, DHs, and RILs as well. A simple 
notepad file is prepared with marker data first; then trait data below; along with a 
Java Development Kit (JDK) extension. The detailed procedure is given in the  
user manual, and a sample data file is available with the software (Joehanes and 
Nelson 2008).

2.4.7  �SAS

If mapping is to be performed only with single-marker analysis, then SAS is used. 
It can identify QTLs by detecting associations between marker genotype and 
phenotype of the quantitative trait. Analysis of variance, t test, general linear model, 
and regression analysis can also be performed with this package (Akbarpour et al. 
2014; Rahman et al. 2014; Zambrano et al. 2014) (Table 1).

2.5  �Interpreting Results

The birth of quantitative genetics was derived from the fusion of Mendelism and 
biometry. The combination of molecular genetic techniques and powerful statistical 
methods enables the researcher to dissect the complicated quantitative traits 
(Mauricio 2001). After having the detailed and authenticated genotypic and pheno-
typic profiles of all the individuals of a segregating population and the parents 
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involved, the need to analyze the results is fulfilled by the computer software. 
Hence, comprehensive interpretation is necessitated. The following details are man-
datory to understand and interpret the results.

2.5.1  �Isolation of Linked Markers

Linkage analysis for a high number of markers cannot be done manually. With the 
help of computer software, as already mentioned, linkage can be determined using 
odds ratios. Understandable expression of this ratio as the logarithm is based on the 
hypothesis that among the total number of markers how many are linked and the rest 
are unlinked. So, the logarithm of odd ratios is “the ratio of linkage versus no link-
age” (Collard et al. 2005). A logarithm of odds (LOD) value greater than 3 is usu-
ally applicable for mapping. If any two markers have a LOD value of 3, the chances 
of their linkage is more than 1000:1 (linkage:no linkage). LOD is basically a 
Z-distribution (Morton 1955).

	

LOD
Probability that twomarkersare linked
Probability

= =Z log
: /

10 tthat twomarkersare unlinked
NR NR

é
ëê

ù
ûú

= -( ) ´ +( )log / .10 1 0 5q q R R

	

where LOD is the logarithm of odds, θ is the recombinant fraction = R/(NR + R), NR 
is the number of nonrecombinants, and R is the number of recombinants.

For large data sets, LOD can easily be calculated by the software mentioned. As 
many as the number of individuals in the population, the authenticity for determina-
tion of genetic distance between the markers and their sequence will be increased 
(Collard et al. 2005).

Table 1  Computer software used in quantitative trait loci (QTL) mapping

Plant species Software QTL Reference

Cotton Join map 65 Tang et al. (2015)

Peanut QTL Cartographer mQTL Pandey et al. (2014)

Brassica oleraceae MapQTL v.4 13 Lv et al. (2014)

Potato Illumina software mQTL Prashar et al. (2014)

Grape MapQTL 3 Ban et al. (2014)

Vicia faba Map manager v. 20 4 Kaur et al. (2014)

Yellow croaker Join map 7 Ye et al. (2014)

Rice WinQTLCart. v. 2.5 3 Yun et al. (2014)

Maize QTL Network v. 2 55 Liu et al. (2014)

Eggplant QGene 71 Frary et al. (2014)

Wheat SAS v. 8.1 4 Daoura et al. (2014)
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2.5.2  �Mapping Function

This function It is required to convert a recombination fraction to the centimorgan 
(cM). It has been observed that recombination frequency and crossing over are not 
related in a linear order (Hartl and Jones 2001). Mapping function is also calculated 
by recombination values. Mapping functions are mathematical adjustments used in 
the measurement of genetic distances between two loci (Vinod 2011). Vinod (2011) 
has also emphasized that there are three options, to choose any of the three of the 
mapping functions:

•	 Complete interference does not permits double crossover; thus, Morgan’s map-
ping function is there to be applied to cover additives.

•	 Incomplete interference enables double crossover to a certain extent, so we have 
Kosambi’s mapping function to be used.

•	 No interference compels us to use Hadan’s mapping function.

The genetic distance between the markers or genes is not directly related to  
the physical distance on DNA between genetic markers but also corresponds to the 
genome size of the plant species (Han and Ming 2014). As we know, markers split 
the mapping population into different clusters. Then, we have two types of group-
ing, one made by the markers and the other made by the visual observation of a 
continuously varying trait. We also have information about the linked markers. The 
statistical significance between the groups made by the markers and phenotypic trait 
means is then of prime importance (Young 1996).

2.5.3  �Single-Marker Analysis

The single-marker effect can be analyzed statistically by t test, analysis of variance, 
and linear regression. Coefficient of determination (R2) from the marker that 
explains the variation shown by a quantitative trait describes to what extent the 
marker and the QTL are linked to each other (Collard et al. 2005).

2.5.4  �Interval Mapping

Sometimes an issue faced after single-marker regression is the effect of QTL 
magnitude and position (Erickson et al. 2004) and is resolved by the interval map-
ping techniques. It confines the QTL between the interval of a pair of two genetic 
markers with the help of a LOD (maximum likelihood) score (Collard et al. 2005). 
With the help of the interval, the mapping effect between the QTL and marker dis-
tance is expressed as a magnitude. Interval mapping is mainly of four types: simple 
interval mapping (SIM) as performed by Nelson (1997), composite interval map-
ping (CIM) (Basten et  al. 2004), and multiple interval mapping (MIM) by Zeng 
et al. (1999).
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The results obtained can be presented in a tabular form including highly  
linked markers or by graphs made by software (Burton et al. 2014, 2015; Oakley 
et al. 2014).

3  �Modern Perspectives in QTL Analysis

With every passing day, progress is made in each field of the sciences as in electron-
ics equipment, software packages, and chemical sciences. Traditional QTL map-
ping with respect to phenotyping and genotyping has been modernized as well. By 
the advances in genotypic and phenotypic platforms, it has now become possible to 
perform multi-trait analyses to unravel pleiotropy and the gene control mechanisms 
of complicated traits (Alonso-Blanco and Méndez-Vigo 2014).

The search for genetic polymorphism by using intensive and a variety of markers 
for a particular species always opens the door for detailed and modified phenotyp-
ing, which is helping breeders, plant pathologists, and physiologists as well. Having 
detailed genotypic information, it has become feasible to check the association  
of phenotypic diversity with new genetic regions. Understanding of genetic and 
molecular bases of polygenic traits has always been the major objective of the 
geneticists. As much as the loci are involved in controlling a particular trait, to 
detect their interaction and interference becomes vital, demanding a high level of 
specialization.

Meta-analysis of QTL mapping is a promising tool in which multiple quantita-
tive trait loci are analyzed. Results obtained from different studies demand more 
statistical potential for QTL identification. Thus, meta-analysis can produce stron-
ger inferences than other univariate studies. Details of the meta-analytical aspects of 
QTL have been a focus by Wu and Hu (2012). Possibly the genetic bases of quanti-
tative traits are related to phenotypic level, which also fluctuates between simple 
oligogenic and complex polygenic inheritance (Joseph et al. 2013).

3.1  �Genotyping to Genomics

For QTL analysis, much detail about genotypic variations is available so as to better 
analyze the QTL responsible for the trait of interest. In the present day, screening of 
a mapping population with only a few hundred markers has now been shifted up to 
9K, 90K iSelect SNP (Avni et al. 2014). DArtT markers (Grzebelus et al. 2014) kits 
are also available, and genotyping by sequencing (GBS) is another platform to 
assess genetic diversity among the segregating population individuals (Verde et al. 
2012; De Donato et al. 2013; Buckler 2014; Larson et al. 2014; Liu et al. 2014).

To detect single-nucleotide polymorphisms (SNPs), there is the widely adapted 
technique known as microarray technology that identifies SNPs through hybridiza-
tion of DNA to oligonucleotides fixed on a chip. This microarray-based genotyping 
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detects allelic diversity by locating thousands of SNPs quickly (Huang and Han 
2014). Five high-throughput genotyping methods have been reviewed by Huang 
and Han (2014): microarray-based genotyping, sequencing-based genotyping, 
genotyping-based sequencing, RNA-seq-based genotyping, and exon-sequencing-
based genotyping.

As a crop reference genome is published, it become easier to characterize 
genome-wide variation for genetic mapping (Lai et al. 2010; Jiao et al. 2012).

3.2  �Phenotyping to Phenomics

Large numbers of quantitative traits have been traditionally dissected at different 
levels of biological organization, not only because of details provided by advanced 
genotyping platforms but also simple to modern phenotypic techniques. The shift 
from phenotyping to phenomics is characterized by measurement of physical and 
biochemical traits of the organism as they respond to genetic diversity and environ-
mental fluctuation. High-throughput 2D and 3D image analyses are being used to 
produce a phenotypic profile for QTL analysis (Topp et al. 2013; Joosen et al. 2012). 
Fieldwork for phenotyping is still very difficult, particularly when experimental crops 
have been planted on multiple environments in a vast area. Presently, some sensor-
based platforms have been made for measuring biomass traits. Near-infrared spec-
troscopy on agricultural harvesters and spectral reflectance of plant canopies reflecting 
that future development in phenotyping will enables QTL analysis to be more detailed 
and widely applied in the gene discovery of food crops (Huang and Han 2014).

In phenotype cover interface between the genome and the environment, the 
phenotypic architecture is often equipped with an explained set of biodiversities 
(Burleigh et al. 2013).

3.3  �Multiparent Advanced Generation Inter-Cross (MAGIC) 
Populations

MAGIC populations were first reported by Mott et al. (2000), and further develop-
ment of such populations was performed by Kover et al. (2009) when it was hypoth-
esized that QTL can be analyzed with improved accuracy along with cloning. A first 
panel of MAGIC lines with a set of 527 RILs of Arabidopsis thaliana was produced. 
Many known QTL with high precision and some important QTL for germination 
data and bolting time were detected. It has been recommended that the usage of 
MAGIC lines for other organisms can analyze QTL with more authenticity. QTL 
analysis using MAGIC lines using the probability of inheriting founder alleles 
across the whole genome at a time, and the whole-genome approach was estimated 
during a simulation study and proved itself a powerful method of analysis (Verbyla 
et al. 2014).
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3.4  �Next-Generation Sequencing (NGS)

NGS is a high-throughput sequencing-based genotyping technique. NGS technol-
ogy is being widely adopted in which millions of DNA fractions at a time are being 
synthesized and sequenced. A genomic DNA sample is sliced into a library of small 
fragments that are uniformly and exactly sequenced in millions of parallel reactions. 
Newly detected lengths of bases, which are then called reads, again reunite using a 
known reference genome, and the full set of arranged reads represents the entire 
sequence of each chromosome (Grada and Weinbrecht 2013). Quail et al. (2012) 
compared three major sequencing platforms (Torrent’s PGM, Pacific Bioscience 
RS, and the IlluminaMiSeq) with IlluminaHiSeq and concluded that all three fast 
turnaround sequencers were able to generate usable sequences but that crucial dif-
ferences were found among the quality of the data.

Burleigh et al. (2013) purposed a next-generation phenomics project to facilitate 
biologists working with phenotypic data. Three prominent areas have been focused: 
(a) computer vision techniques to detect and record trait, (b) to increase the speed of 
the scoring and producing data sets supported with labeled anatomical images, and 
(c) to extract character data, natural languages will be processed.

NGS technologies offering latest moves toward fine-mapping as well as gene 
identification are greatly beneficial for food crop research. Trick et  al. (2012) 
employed bulk segregant analysis (BSA) to fine-map the genes in tetraploid wheat 
lines and discovered SNPs with the help of next-generation sequences data.

4  �Practical Potential of QTL Analysis

Mineral nutrition along with micro and trace elements (Lowry et al. 2012), primary 
and secondary metabolites (Joosen et al. 2013), and some flavonoids influencing 
quantitative traits have been studied in recent years (Routaboul et al. 2012). QTL 
analysis has explored certain levels of transcriptomic field encompassing transcript 
variations. Cubillos et al. (2012) while studying the RILs of Arabidopsis stated that 
genetic makeup that is responsible for transcriptional variation can assist knowing 
the phenotypic variation. During the study of epigenetic variations, a new class of 
methyl QTL has also been reported by Schmitz et al. (2013). Differentially methyl-
ated regions (DMR) have also been mapped and depict that a major part of such 
epigenetic quantitative variations is the consequence of genetic variation in cis-
methyl QTL and trans-methyl QTL.  Alonso-Blanco and Méndez-Vigo (2014) 
reviewed that DMRs are found associated with gene expression variation; hence, it 
can be assumed that methyl QTL are about to display another molecular level con-
trolling expression and ultimately a higher level of quantitative traits. Differential 
QTLs for micronutrients in seed structure have also been reported by Blair et al. 
(2013). Moscou et al. (2011) detected a cis-eQTL gene as candidate for a major 
fungal resistance locus as well as trans-eQTL colocating with an enhancer of the 
resistance (reviewed by Alonso-Blanco and Méndez-Vigo 2014).
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4.1  �Crops with Improved Breeding Strategies

In crops, to dissect complex QTLs such as grain yield and stress tolerance, a huge 
sample size up to thousands of individuals is required. Now it has become possible 
to genotype such large samples using advanced genotypic methods. Crop breeding 
based on Marker-assisted selection is beneficial for simple Mendelian traits, but it is 
trouble creating for complex quantitative traits such as stress tolerance. Sometime 
through marker-assisted selection an unexpected QTL appear and fails in trait 
expression with little phenotypic variation being observed. Such trouble shoots can 
be overcome through genomic selection. Genomic selection is a simple and power-
ful approach in which breeding values are assigned using their phenotypes and 
marker genotypes (Deshmukh et al. 2014). By applying molecular breeding tech-
niques, food crops such as maize, rice, potato, and wheat have been greatly advanced 
and developed with respect to their yield and stress tolerance.

4.2  �Revealing the Genetic Bases of Abiotic Stress Tolerance

Abiotic stresses such as drought, heat, and salinity have massive influence on food 
crop yield. Mechanism of abiotic stress tolerance and exact phenotyping for such 
aim has been poorly formulated so far. Irrespective to the constant and single envi-
ronment, a number of QTLs under the influence of environmental interaction has 
been identified so far. Studies such as germination, growth, and flowering time  
are being performed under variable field conditions of temperature and moisture in 
different environments (Fournier-Level et  al. 2011; Ågren et  al. 2013; Leinonen 
et al. 2013). Crops having ability to adapt extreme environmental conditions can  
be a significant source for crop improvement to fulfill the food needs of the ever-
increasing populace (Huang and Han 2014). An abiotic stress tolerance mechanism 
can be traced out with phenomics and genomic tactics. Molecular bases of environ-
mental tolerance are being probed through high-throughput phenotyping and geno-
typing platforms (Roy et al. 2011).

For drought tolerance, a QTL hotspot has been reported during the study of three 
populations in maize (Almeida et al. 2014). Constitutive and adoptive regions for 
drought tolerance were earlier reported by Almeida et al. (2013). Doubled haploid 
(DH) lines of canola were examined to associate root and leaf traits with drought 
tolerance with the help of QTL analysis (Mekonnen 2013). A high-throughput phe-
notyping platform has been used to identify drought tolerance QTL in wild barley 
introgression lines (Honsdorf et  al. 2014). Using SNPs and haplotypes, QTL for 
height and biomass as secondary traits of drought tolerance were detected in maize 
by Lu et al. (2012).

Using SNPs, QTLs for heat tolerance in rice have been mapped by Ye et  al. 
(2012). Paliwal et al. (2012) mapped QTLs on 7DS in hexaploid wheat using the 
composite interval mapping approach. Talukder et al. (2014) mapped QTLs for the 
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traits responsible for heat tolerance in wheat. Family-based QTL mapping of heat 
tolerance in Triticum turgidum has been performed by Ali et al. (2013).

As far as salt tolerance is concerned, QTL mapping has been performed in a 
variety of valuable crops to make the optimal use of saline or salt-affected lands. 
Chankaew et al. (2014) mapped QTLs for salt resistance in Vigna marina. In Zoysia 
japonica QTL analysis was performed by (Guo et al. 2014). Validation of the domi-
nant salt tolerance gene in cultivated soybeans was mapped by Guan et al. (2014). 
In wild soybean, a major salt tolerance QTL was mapped by Ha et al. (2013).

4.3  �Exposing Genetic Dissection of Biotic Stress Resistance

Stress resistance mechanisms are governed by many genes in most plant species. 
Plant–pathogen interactions underlie the effect of many genes responsible for plant 
defense. QTL analysis successfully helps in genetic dissection of the resistance 
mechanism. After detecting the QTL region involved in biotic stress resistance, 
marker-assisted selection enables the breeder to produce more resistant crops. QTLs 
for disease resistance found and utilized in breeding create durable resistance  
in genotypes, which proves an active method to achieve such broad-spectrum 
resistance, and thus these modified crops can be a good genetic resource (Kou and 
Wang 2010).

By using the marker-assisted selection (MAS) approach, gene pyramiding is per-
formed to create broad-spectrum resistance in plant species (Tester and Langridge 
2010). MAS for Lr 34, Yr 18, and powdery mildew 38 resistance in wheat and 
barley have been performed by Miedaner and Korzun (2012). Joshi and Nayak 
(2010) reviewed that durable stress resistance in crops can be achieved through gene 
pyramiding. Gene pyramiding for rice blast management through host-plant resis-
tance has been reported by Sharma et al. (2012). To avail the gene pyramiding tech-
nique, Grimmer et al. (2014) analyzed four different wheat mapping populations 
being segregated for partial resistance to four contrasting foliar pathogens. It was 
stated using simple multiplicative survival (SMS) that with an increased number of 
loci, an enhanced level of disease resistance was achieved in wheat lines. In rice, 
quantitative resistance genes pi21, Pi34, and Pi35 have been pyramided by Yasuda 
et al. (2015). Rice breeding lines with three pyramided resistance genes have been 
developed for broad-spectrum resistance against bacterial blight (Suh et al. 2013).

One major QTL for leaf spot and rust resistance in groundnut has been reported 
by Khedikar et al. (2010). In wheat, QTL mapping for multiple foliar disease and 
root lesion nematode resistance has been focused by Zwart et al. (2010). In potato, 
working on late blight resistance, a consensus map and QTL meta-analysis were 
performed by Danan et al. (2011). Genome-wide association mapping revealed dis-
ease resistance QTLs in barley (Gutiérrez et al. 2013). QTL mapping for fruit rot 
resistance in a Capsicum annuum population was done by Naegele et al. (2013).

A massive literature has become available in recent years to highlight the signifi-
cance of QTL analysis. Here we present one view of a survey in table form (Table 2).
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5  �Conclusions and Future Perspective

From the Mendelian era to Morgan’s linkage analyses, extension of knowledge 
from qualitative traits to quantitative, it has become clear that in days to come nucle-
otides and their expression will be comprehensively understood. Fine mapping, 
chromosome walking, and dissection of the quantitative traits with the help of 
highly dense maps has annexed genetics with all other biological sciences. To see 
genetic change and diversity has now become very clear with the aid of next-
generation sequencing platforms. With the passage of time, the science of genetics 
is becoming laboratory based, but to the common man the threat of hunger and 
starvation still prevail with the increasing populace. What has been done in the field 
of molecular breeding has not yet advanced the contribution of the green revolution: 
even at that time such sophisticated tools were not available. Now with the advances 
in laboratory science there comes a dire responsibility to the agricultural researcher 
to feed the world populace of more than 9 billion in coming years. Can such fancy 
laboratory techniques fill the empty stomachs of nutritionally deprived peasants? 
There is a need to integrate laboratory science with fieldwork and to target it as per 
the demands of the market and common people. Such research should have an 
impact rather than being an impact factor.
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