
Dr. Anil K. Malik

Relativistic Quantum Mechanics

SUPA Graduate School
October/November 2008

David J. Miller
University of Glasgow

Recommended Text:   Quarks & Leptons by F. Halzen and A. Martin
(though this is not really necessary)

http://www.physics.gla.ac.uk/~dmiller/lectures/RQM_2008.pdf

Department of Physics
Ch. Charan Singh University Meerut

Lecture  10,11



PLANE	WAVE	SOLUTIONS	OF	KG

.  

• To get a feeling for what the KG equation describes, let us look for separable 
solutions 

(1)
• Substituting this value in K G equation, we get

where we introduced a separation constant E2 independent of both ~r and t and having
dimensions of energy - squared. Ψ 𝑟 must be an eigenfunction of the Laplacian (i.e.,
satisfy the Helmholtz equation)

• The operator −ℏ!𝑐!∇!+𝑚!𝑐" is a +ve operator and coincides with the hamiltonian
of a non-relativistic particle in a constant potential. So, its eigenfunctions are free
particle energy eigenstates (e.g. plane waves propagating in any direction). So, the
separation constant E2 must be positive, which justifies the notation E2with E real.
Then, we have

(2)

(3)

(4)



• Now 𝐸! −𝑚!𝑐", being the eigenvalue of a positive operator −ℏ!𝑐!∇! must be non-
negative. Let us denote the quantity 𝐸! −𝑚!𝑐" by 𝑝!𝑐!, for some positive number 𝑝! .
We of course recognize that the above Helmholtz equation arises from the relativistic
energy-momentum dispersion relation 𝐸! −𝑚!𝑐" = 𝑝!𝑐! , upon use of the
correspondence rule 𝑝 → −𝑖ℏ∇. The general solution of the Helmholtz equation is a linear
combination

Thus, separable solutions of the KG equation take the form

• These solutions are bounded over all space at all times and could potentially
describe the amplitude of some disturbance.

• A peculiar feature of above solution is that for a fixed momentum vector �⃗�, there
are plane waves that moves in the direction of �⃗� and in the opposite direction.

• From classical mechanics as well as non-relativistic quantum mechanics, a
particle with given momentum moves in the direction of the momentum vector

• This is reflection of the fact that we started with condition 𝐸! −𝑚!𝑐" = 𝑝!𝑐!, which
includes both positive and negative energies for a given momentum vector.

• This problem did not arise for the Schrodinger equation as it is first order in time,
while the KG equation is second order in time.

(5)

(6)



• Another way of looking at this: The KG equation admits (check by substitution) plane 

wave solutions 𝑒#
!
ℏ $%#'⃗.)⃗ where 𝑘 = ⁄�⃗� ℏ is an arbitrary wave vector and

(7)

• We may call the mode with 𝐸 > 0 or 𝜔 = 𝐸/ℏ > 0 or a positive
energy/frequency mode and one with 𝜔 < 0 a negative energy mode.

• This nomenclature is somewhat arbitrary since we could have written the

plane wave as 𝑒
!
ℏ !"#%⃗.'⃗ . Independent of convention, for every plane

wave with `energy' E, there is one with energy -E. In this sense, the
spectrum of energies of the massive KG equation is continuous and
comes in two disjoint pieces −∞,−𝑚𝑐( ∪ [𝑚𝑐(, ∞) . So the energy
spectrum is not bounded below, there is no least value of E.

• Calculate the group speed 𝑣) =
*+
*,

of disturbances that propagate
according to the dispersion relation 𝐸 = ℏ𝜔 𝑘 = 𝑚(𝑐- + ℏ(𝑘(𝑐( show
that the group speed is less than the speed of light and approaches c
when 𝑚 → 0. The group speed is the speed at which signals propagate.



• One option is to simply disallow the negative energy solutions. For
example, we might implement this for plane waves by allowing only those
initial conditions which ensure that the wave moves in the direction of the
momentum vector, ensuring that E > 0. Within the context of the KG
equation, this is seemingly ok, since the particle will then remain in that
stationary state for ever. However, under the influence of external
perturbations, the particle could make a transition to a lower energy state.

• Since there is no ground state, the particle could keep dropping down in
energy while emitting radiation. The system is unstable to perturbations as
it does not have a ground state. This is problematic since we could extract
an infinite amount of energy from such a particle as it makes transitions to
states of arbitrarily negative energy.

• The phase speed 𝑣% =
+
,
can exceed the speed of light. Physical signals do

not travel at the phase speed. The different planes waves that combine to
form a wave packet can have phase speeds that exceed the speed of light,
they destructively interfere at most locations except in the vicinity of the
wave packet, which travels at the group speed.



• Despite this difficulty with trying to interpret solutions of the KG
equation as the wave function of a particle, the equation exhibits
several physically desirable features, such as a local conservation law
and Lorentz invariance, which we describe next.

NON-RELATIVISTIC LIMIT

Ø To obtain non-relativistic limit of the KG equation, one cannot
do this by simply putting 𝑐 = ∞ in the KG equation.

Ø Classically, a nonrelativistic situation is one where the energy
is mostly rest energy. For a free particle i.e. 𝐸 = 𝑚𝑐! +
𝐾𝐸 ≈ 𝑚𝑐! + "!

!#

Ø In this case, the primary time dependence of a plane wave

𝜓 �⃗�, 𝑡 = 𝑒$
*
ℏ %&$"⃗.)⃗ is given by putting 𝐸 ≈ 𝑚𝑐! .



ØOf course, there would be some residual time dependence due to
the remaining energy. So to facilitate taking the non-relativistic
limit, let us change variables to a new wave function 𝜙 �⃗�, 𝑡

ØWe have in mind that the factor 𝑒 $*#+,&/ℏ takes care of the fast time
dependence (high frequency) and 𝜙 �⃗�, 𝑡 only has a residual slow time
dependence. Putting this form in KG i. e. 𝐸!𝜓 �⃗�, 𝑡 = (

)
𝑚!𝑐. +

𝑝!𝑐! 𝜓 �⃗�, 𝑡 , one finds that satisfies 𝜙 �⃗�, 𝑡



Ø So far, we have made no approximation.

Ø Now we may take a non-relativistic limit by letting 𝑐 = ∞
dependence and we get the usual free particle SE.

Ø An energy eigenstate is then of the form 𝜓 �⃗�, 𝑡 = 𝑒$
*
ℏ %-.&$"⃗.)⃗ ,

where 𝐸/0 = ⁄ℏ!𝑘! 2𝑚.

Ø Thus, for an energy eigenstate, the original wave function is

𝜓 �⃗�, 𝑡 = 𝑒$
*
ℏ %&$"⃗.)⃗ where 𝐸 = 𝑚𝑐! + 𝐸/0



COUPLING TO ELECTROMAGNETIC FIELD OR KG 
EQUATION IN ELECTROMAGNETIC FIELD 

ØWe can study the KG equation in the presence of an electromagnetic
field defined by the scalar and vector potentials 𝜑, 𝐴 in the same way
as we did for the Schrodinger equation.

ØWe apply the `minimal coupling' prescription 𝐸 → 𝐸 − 𝑒 𝜑
𝑃 → 𝑃 − 𝑒 𝐴 (Where E is energy and 𝑃 is momentum) to the
relativistic energy momentum dispersion relation 𝐸! = 𝑚!𝑐. + 𝑝!𝑐!

Ø 𝐴 1 = (2
+
, −𝐴 ) transform under Lorentz transformations in the same

manner as 𝐴 1 = (%
+
, −𝑝 ) i.e. as the covariant components of a 4-

vector.

Ø To get a wave equation we then use the correspondence rule 𝐸 →
𝑖ℏ 3

3&
, 𝑝 → −𝑖ℏ∇ and treat 𝜑, 𝐴 as multiplication operators on the

wave function 𝜓 �⃗�, 𝑡 .



vThis equation can be written manifestly in Lorentz invariant form.
Recall that KG could be written as(𝑝1𝑝1 −𝑚!𝑐!)𝜓 �⃗�, 𝑡 = 0. Coupling
to an electromagnetic field simply means we replace 𝑝1 → 𝑝1 − 𝑒𝐴1

vCheck that this is the same as the above equation.

vWe will say more about the electromagnetic interaction of a relativistic
particle when we discuss the Dirac equation.
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