
LECTURE:4, 5 & 6 (By Anil K Malik) 

 (Note: All bold symbols are for vector quantities) 

 

TRANSITION RATES FOR ABSORPTION AND EMISSION OF 

RADIATION 
Before interaction:  

The joint initial state of atom and radiation is represented as 

|𝜙! >= |𝜓! > |𝑛",𝒌 >!         (21) 

Where |𝜓! > is state of unperturbed atom and |𝑛",𝒌 > is initial state for radiation. 

After Interaction: 

The joint initial state of atom and radiation is given as 

|𝜙% >= |𝜓% > |𝑛",𝒌 >%         (22) 

Let we consider the case of emission of photon; the final state of radiation will be |𝑛",𝒌 + 1 >, 

then final joint state will be 

|𝜙% >= |𝜓% > |𝑛",𝒌 + 1 >         (23) 

Here, electromagnetic field gains the photon. 

<𝜙%)𝑣+&",')𝜙! >	= 	
(
)-

*+ℏ
-.!

< 𝜓%)𝑒/!𝒌⋅𝒓𝜺∗" ∙ 𝑷)𝜓! >< 𝑛",𝒌 + 1|𝑎+&",'|𝑛",𝒌 > 

      =	 (
)-

*+ℏ
-.!

4𝑛",𝒌 + 1 < 𝜓%)𝑒/!𝒌⋅𝒓𝜺∗" ∙ 𝑷)𝜓! >   (24) 

Where <𝑛",𝒌 + 1|𝑎+&",'|𝑛",𝒌 >	= 	4𝑛",𝒌 + 1 < 𝑛",𝒌 + 1|𝑛",𝒌 + 1 >	= 	4𝑛",𝒌 + 1 

Similarly, for absorption field loose photon, the final state will be |𝜙% >= |𝜓% > |𝑛",𝒌 − 1 >. 

Hence  

<𝜙%)𝑣+",')𝜙! >	= 	
(
)-

*+ℏ
-.!

< 𝜓%)𝑒!𝒌⋅𝒓𝜺" ∙ 𝑷)𝜓! >< 𝑛",𝒌 − 1|𝑎+",'|𝑛",𝒌 > 

      =	 (
)-

*+ℏ
-.!

4𝑛",𝒌 < 𝜓%)𝑒!𝒌⋅𝒓𝜺" ∙ 𝑷)𝜓! >    (25) 

Where < 𝑛",𝒌 − 1)𝑎+",')𝑛",𝒌 >=	4𝑛",𝒌 < 𝑛",𝒌 − 1|𝑛",𝒌 − 1 >	= 	4𝑛",𝒌 

TRANSITION RATES: corresponding to emission or absorption of a photon of energy 

ℏ𝜔' = ℏ𝑐𝑘 are 

𝑊()! =	 3+
"("

)"-.!
;𝑛",𝒌 + 1<)< 𝜓%)𝑒/!𝒌⋅𝒓𝜺∗" ∙ 𝑷)𝜓! >)

*𝛿;𝐸% − 𝐸!	 + ℏ𝜔'<  (26) 

And  



𝑊567 =	 3+
"("

)"-.!
;𝑛",𝒌<)< 𝜓%)𝑒!𝒌⋅𝒓𝜺" ∙ 𝑷)𝜓! >)

*𝛿;𝐸% − 𝐸!	 − ℏ𝜔'<   (27) 

 

TRANSITION RATES WITHIN THE DIPOLE APPROXIMATION 

Expansion of   	𝑒±!𝒌⋅𝒓 = 1 ± 𝑖𝒌 ⋅ 𝒓 − 𝟏
𝟐
(𝑖𝒌 ⋅ 𝒓)* ∓	……… 

For visible or ultraviolet light 𝑘𝑟 = 	 *+5#
"
~2𝜋 × 10/;<~	0.001 i.e. very small and incase of  𝛾 

radiations 𝑘𝑟 will be even smaller. The electric dipole approximation corresponds to    𝑒±!𝒌⋅𝒓 ≈

1; hence 

< 𝜓%)𝑒±!𝒌⋅𝒓𝜺" ∙ 𝑷)𝜓! >	≅ 	𝜺" ∙< 𝜓%|𝑷|𝜓! >      (28) 

Now S𝒓+, 	𝐻V<W =
!ℏ𝑷>

)
. Hence inserting 𝑷V = 𝒎

!ℏ
S𝒓+, 	𝐻V<W in Eq. (28). Using 	𝐻V<|𝜓! >	= 𝐸!|𝜓! > and  

 	𝐻V<|𝜓% >	= 𝐸%|𝜓% >, we get 

𝜺" ∙< 𝜓%|𝑷|𝜓! >	=
)
!ℏ
𝜺" ∙< 𝜓%)S𝒓+, 	𝐻V<W)𝜓! >	=

)
!ℏ
;𝐸! − 𝐸%<𝜺" ∙< 𝜓%|𝒓|𝜓! >	  

That gives 

< 𝜓%)𝑒±!𝒌⋅𝒓𝜺" ∙ 𝑷)𝜓! >	= 𝜺" ∙< 𝜓%|𝑷|𝜓! >	= 𝑖𝑚𝜔%!𝜺" ∙< 𝜓%|𝒓|𝜓! >   (29) 

Substituting < 𝜓%)𝑒±!𝒌⋅𝒓𝜺" ∙ 𝑷)𝜓! > from Eq. (29) into Eqs. (26) & (27), we get 

𝑊()! =	
3+"(".$%

"

)"-.!
;𝑛",𝒌 + 1<)𝜺∗" ∙< 𝜓%|𝒓|𝜓! >)

*𝛿;𝐸% − 𝐸!	 + ℏ𝜔'<  (30) 

𝑊567 =	
3+"(".$%

"

)"-.!
;𝑛",𝒌<)𝜺" ∙< 𝜓%|𝒓|𝜓! >)

*𝛿;𝐸% − 𝐸!	 − ℏ𝜔'<   (31) 

Note:  

From Eq. (29), it is clear that transition rate does not vanish even if 𝑛",' = 0	(external radiation 

field) i.e. no perturbation is applied. This shows that spontaneous emission can described along 

with stimulated emission considering quantization of radiation.  

 

THE ELECTRIC DIPOLE SELECTION RULES 
In spherical polar coordinate 𝒓 = (𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑)𝑥+ + (𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑)𝑦+ + (𝑟𝑠𝑖𝑛𝜃)�̂� and 

𝜺" ∙ 𝒓 = 𝑟{(𝜀@"𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑) + ;𝜀A"𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑< + (𝜀B"𝑠𝑖𝑛𝜃)}     (32) 

Using  𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 = −-*+
C
	(𝑌;; − 𝑌;/;) and 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 = 𝑖-*+

C
	(𝑌;; + 𝑌;/;)  and             

𝑐𝑜𝑠𝜃 = -3+
C
	𝑌;<, Eq. (32) will become 

 𝜺" ∙ 𝒓 = -3+
C
	𝑟(/D&'&!D('

√*
𝑌;; +

D&'&!D('
√*

𝑌;/; + 𝜀B"𝑌;<)    (33) 



That leads to 

𝜺! ∙< 𝜓"|𝒓|𝜓# = ($%
& ∫ 	𝑟&𝑅'",)"∗+

, 𝑅'#,)#𝑑𝑟  

× ∫𝑌)",-"∗ (
./!"0#/#"

√2
𝑌33 +

/!"0#/#"
√2

𝑌3.3 + 𝜀4!𝑌3,)𝑌)#,-#𝑑Ω     (34) 

The integration over the angular degree of freedom can be calculated using Wigner-Eckart theorem 

∫𝑌)",-"∗ 5
./!"0#/#"

√2
𝑌33 +

/!"0#/#"
√2

𝑌3.3 + 𝜀4!𝑌3,6𝑌)#,-#𝑑Ω =< 𝑙" , 𝑚":𝑌),-$:𝑙# , 𝑚# > 

= (	
&(2)%03)
$%(2)&03)

<𝑙# , 1; 0,0:𝑙" , 0 >	< 𝑙# , 1;𝑚# , 𝑚7:𝑙" , 𝑚" >        (35) 

Where the value of 𝑚7 = −1, 0, 1. Thus, by substituting Eq. (35) into Eqs. (30) & (31), we get 

𝑊()!~	< 𝑙𝑖, 1; 𝑚𝑖, 𝑚′|𝑙𝑓, 𝑚𝑓 >
2       (36) 

And  

𝑊567~	< 𝑙𝑖, 1; 𝑚𝑖, 𝑚′|𝑙𝑓, 𝑚𝑓 >
2
         (37) 

The dipole selection rules are similar to that specified by the selection rules of the Clebsch–Gordan 

coefficient <𝑙# , 1;𝑚# , 𝑚7|𝑙" , 𝑚" >. Thus 

• Transition rates are zero unless 𝑚" −𝑚# =	𝑚7 =	−1, 0, 1.  

• Allowed values of  𝑙"  are 𝑙# − 1 ≤ 𝑙" ≤ 𝑙# + 1	𝑖. 𝑒.	  𝑙" − 𝑙# = −1, 0, 1. Since Clebsch–Gordan 

coefficient <𝑙# , 1;𝑚# , 𝑚7|𝑙" , 𝑚" > is zero for 𝑙# = 𝑙" = 0. This implies that no transition 

between 𝑙# = 0 and 𝑙" = 0. 

• Finally, since the coefficient <𝑙# , 1; 0,0|𝑙" , 0 > vanishes unless (−1))%.)&03 = 1 or    

(−1))%.)& = −1, then (𝑙# − 𝑙") must be an odd integer i.e. 𝑙# − 𝑙"	= odd integer. This signifies 

that in case of electric dipole transitions, the final and initial states must have different parities. 

For example, 1𝑠 → 2𝑠, 2𝑝 → 3𝑝, 𝑒𝑡𝑐. are forbidden, while transitions like 1𝑠 → 2𝑝, 2𝑝 → 3𝑠, 

etc. are allowed. 

 

SPONTANEOUS EMISSION 
The rate of emission of photon from atom in case of quantized radiation is  

𝑊()! =	
3+"(".$%

"

)"-.!
;𝑛",𝒌 + 1<)𝜺∗" ∙< 𝜓%|𝒓|𝜓! >)

*𝛿;𝐸% − 𝐸!	 + ℏ𝜔'<  

The expression shows that transition rate does not vanish even if 𝑛",' = 0	(external radiation 

field) i.e. no perturbation is applied. The transition rate for spontaneous emission are 

 𝑊()! =	
3+".$%

"

)"-.!
𝑛",𝒌)𝜺∗" ∙< 𝜓%|𝑒𝒓|𝜓! >)

*𝛿;𝐸% − 𝐸!	 + ℏ𝜔'< 

            =	
3+".$%

"

)"-.!
𝑛",𝒌)𝜺∗" ∙ 𝒅𝒇𝒊)

*𝛿;𝐸% − 𝐸!	 + ℏ𝜔'<	        (38) 



Where 𝒅 = −𝑒𝒓 is electron electric dipole and  

 𝒅𝒇𝒊 =	< 𝜓%|𝒅|𝜓! >	=< 𝜓%|𝑒𝒓|𝜓! >      (39) 

The transition rate corresponding to the transition of the atom from the initial state |𝜓! > to the 

final state |𝜓% > as a result of its spontaneous emission of a photon of energy ℏ𝜔'. The final 

states of the system consist of products of discrete atomic states and a continuum of photonic 

states. The photon emitted will be detected in general as having a momentum in the momentum 

interval (𝑝, 𝑝 + 𝑑𝑝) located around 𝑝 = 	ℏ𝑘. The transition rate needs then to be summed over 

the continuum of the final photonic states. The number of final photonic states within the unit 

volume V, whose momenta are within the interval (𝑝, 𝑝 + 𝑑𝑝), is given by 

𝑑C𝑛 = 	 -H
)I

(*+ℏ))
=	 -I

"HIHL
(*+ℏ))

= -ℏ)."

(*+ℏ))M)
𝑑Ωdω =	 -."

(*+M))
𝑑Ωdω     (40) 

The transition rate corresponding to the emission of a photon in the solid angle 𝑑Ω is obtained 

by integrating of transition rate over dω: 

𝑑Γ()! =	
𝑉

(2𝜋𝑐)C 𝑑Ωm𝜔
*𝑊()!dω =

1
2𝜋𝑐C 𝑑Ω	)𝜺

∗
" ∙ 𝒅𝒇𝒊)

*

m𝜔%!* 	𝜔𝛿;𝐸% − 𝐸!	 + ℏ𝜔< dω 

              	= 	 ;
*+ℏM)

𝑑Ω	)𝜺∗" ∙ 𝒅𝒇𝒊)
*
∫𝜔%!* 	𝜔𝛿;𝜔!% − ℏ𝜔< dω     (41) 

Here we used 𝛿;𝐸% − 𝐸!	 + ℏ𝜔< = 	
;
ℏ
	𝛿;𝜔!% − ℏ𝜔< with 𝜔!% =

N%/N$	
ℏ

. The integration of Eq. 

(41) gives  

𝑑Γ()! =	 .)

*+ℏM)
)𝜺∗" ∙ 𝒅𝒇𝒊)

*𝑑Ω        (42) 

Let the emitted photon travels along  𝒌 = 𝑘	𝒏p that is normal to 𝜺∗"(corresponds to specific state 

of polarization). To obtain transition rate corresponding to any state of polarization, we need 

to sum over two state of polarization of the photon i.e. 

∑ )𝜺∗" ∙ 𝒅𝒇𝒊)
* = )𝜀∗;(𝑑%!);)

* + )𝜀∗*(𝑑%!)*)
* =	 )𝑑%!)

* − )(𝑑%!)C)
**

"O;    (43) 

Since 𝒅𝒇𝒊  is matrix elements and hence symmetric in all directions. Thus 

< )(𝑑%!);)
* >=< )(𝑑%!)*)

* >	=< )(𝑑%!)C)
* >=	 ;

C
< )𝑑%!)

* >    (44) 

Thus, an average over polarization 

∑ )𝜺∗" ∙ 𝒅𝒇𝒊)
* =*

"O;  )𝑑%!)
* − ;

C
< )𝑑%!)

* > =   *
C
< )𝑑%!)

* >    (45) 

Using Eq. (45), we obtain transition rate as 

𝑑Γ()! =	 .)

C+ℏM)
)𝒅𝒇𝒊)

*𝑑Ω         (46) 

We integrate over the angular part of the degree of freedom only and not over all possible 

directions that gives ∫𝑑Ω = 4𝜋. Thus, transition rate will be 



Γ()! =	 3.
)

CℏM)
)𝒅𝒇𝒊)

* = 3.)("

CℏM)
)< 𝜓%|𝒓|𝜓! >)

*      (47) 

Where 𝜔 = N$/N%	
ℏ

.  

We obtain total power (intensity) of radiated by the electron as 𝐼 = ℏ𝜔Γ()!. Thus, 

𝐼 = 3.+("

CM)
)< 𝜓%|𝒓|𝜓! >)

*         (48) 

Eq. (47) & (48) give the transition rate and intensity for single electron-atom system. For a 

system having 𝑧 number of electrons, the dipole moment will be  

𝒅 = −𝑒∑ 𝒓𝒋*
QO;            (49) 

The average lifetime of an excited state is given as  

𝜏 = 	 ;
∑ S%→$

-.%
$

=	 ;
S-.%			               (50) 
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