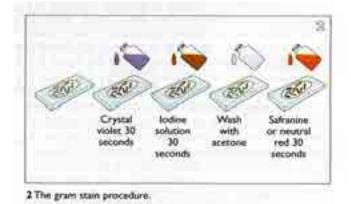
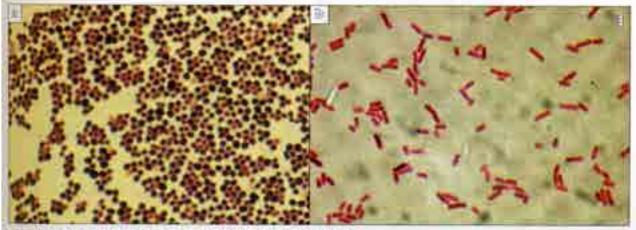

I. Antibiotics: Overview

A. Definitions

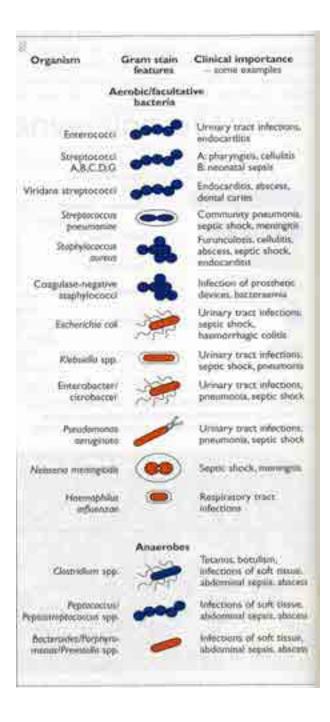
Definition: Antibiotics are molecules that kill, or stop the growth of, microorganisms, including both bacteria and fungi.

Antibiotics that kill bacteria are called "bactericidal" Antibiotics that stop the growth of bacteria are called "bacteriostatic"





B. Why do we want to kill bacteria?


Types of bacteria: Gram stain

- A test, resulting in the classification of bacteria, developed in the last century by Hans Christian Gram, a Danish microbiologist
- Gram positive bacteria will retain the original blue stain
- Gram negative bacteria will lose the blue stain upon intermediate acetone treatment and will stain red

1 hocometographs of (a) gram-positive couct in clusters; (b) gram-negative rods.

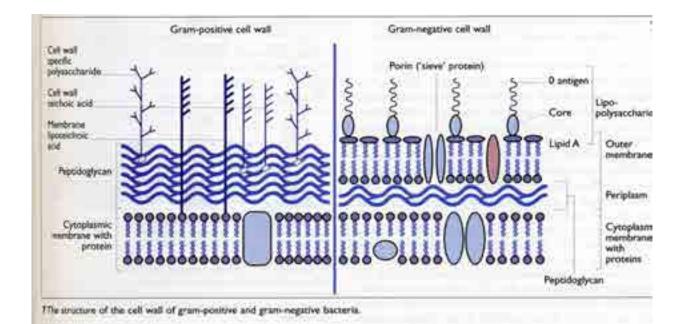


Table 2.3 Bacteria that are common causes of infections

Infections	Gram-negative pathogens	Gram-positive pathogens
Burns	Pseudomonas aeruginosa	Staphylococcus aureus
Skin infections		S. aureus
Throat		Streptococcus pyogenes
Otitis media	Haemophilus influenzae	Streptococcus pneumoniae
Pneumonia	H. influenzae	5. pneumoniae
Endocarditis		S. aureus, Enterococcus faecalis
Septicemia	Escherichia coli	S. aureus, S. pyogenes
Gastrointestinal tract	Salmonella enterica serovar Typhimurium Helicobacter pylori, E. coli, Shigella dysenteriae	
Urinary tract	E. coli	Enterococcus sp.

Adapted from Table 1.1 of Scholar and Pratt (2000), with permission.

Definitions:

Pneumonia: Inflammation of the lung, usually caused by bacteria or viruses.

Otis media: Inflammation of the middle ear

Endocarditis: Inflammation of the innermost tunic of the heart

Septicemia: Systemic disease caused by the spread of microorganisms and their toxins via the circulating blood (also called "blood poisoning")

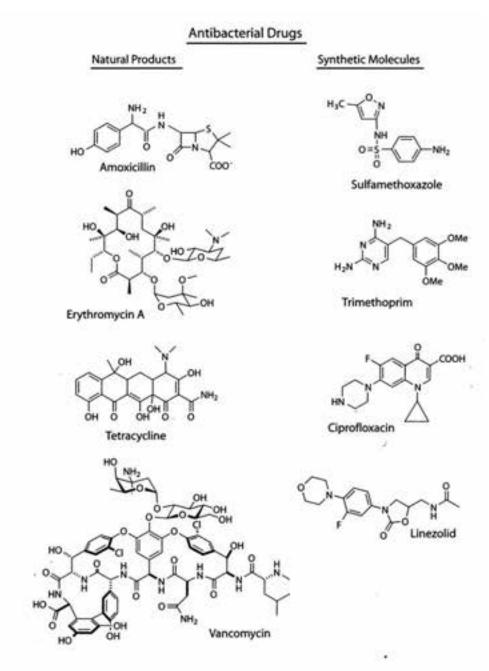
Pathogen: a microorganism that causes disease.

Virulence: The disease-evoking severity of a pathogen

C. Classes of antibiotics

1. β-Lactam antibiotics

examples: penicillins (e.g. amoxicillin), cephalosporins, carbapenems, monobactams, etc.


2. Tetracyclines

example: tetracycline

- 3. Macrolide antibiotics example: erythromycin
- 4. Aminoglycosides examples: Gentamicin, Tobramycin, Amikacin
- Quinolones example: Ciprofloxacin (a fluoroquinolone)
 Cyclic peptides
 - examples: Vancomycin, Streptogramins, Polymyxins
- 7. Lincosamides example: clindamycin
- 8. Oxazolidinoes

example: Linezolid (Zyvox)

9. Sulfa antibiotics example: sulfisoxazole

Structures of naturally and synthetically derived antibacterials.

D. Which antibiotics are most commonly used?

Class	Worldwide sales (\$ millions)	Representative drugs	Infections that have developed resistance
Cephalosporins	8,445	Cefaclor, cefuroxime	Bronchitis, pneumonia, meningitis
Penicillins	4,413	Amoxicillin, ampicillin	Pneumonia, septicemia, bronchitis
Fluoroquinolones	3,309	Ciprofloxacin, ofloxacin	Toxic shock syndrome, meningitis
Macrolides	2,927	Clarithromycin, erythromycin	Toxic shock syndrome, meningitis
Tetracyclines 744		Minocycline	Urinary tract infections, pelvic inflammatory disease
Aminoglycosides	729	Gentamicin	Intestinal infections, septicemia
Glycopeptides	462	Vancomycin	Intestinal infections
All other systemic antibiotics	1,873	Imipenem, rifampin	Bronchitis, tuberculosis

Table 1.2 Summary of sales of major chemotherapeutic antibacterial agents

Class	Sales (billion of dollars)	Trend	
Cephalosporins	6.0	up	
Penicillins	2.5	little change	
Quinolones	1.7	strongly up	
Macrolides	1.5	slightly up	
Tetracyclines	0.5	down	
Aminoglycosides	0.5	down	
Others	2.0	little change	

Table 2.1 Ar	itibiotic sa	les in	1997
--------------	--------------	--------	------

Drug	\$ millions
Cephalosporins	
Rocephin (Roche)	933
Ceftin (GlaxoWellcome)	640
Ceclor (Lilly)	542
Fortaz (GlaxoWellcome)	449
Claforan (Hofmann LaRoche)	335
Macrolides	
Biaxin (Abbott)	1,150
Zithromax (Pfizer)	619
β-Lactamase inhibitors	
Augmentin (GlaxoSmithKline)	1,354
Primaxin (Merck)	555
Unasyn (Pfizer)	619
Penicillins	
Amoxil (GlaxoSmithKline)	406
Quinolones	
Ciprofloxacin (Bayer)	1,290

How do antibiotics work?

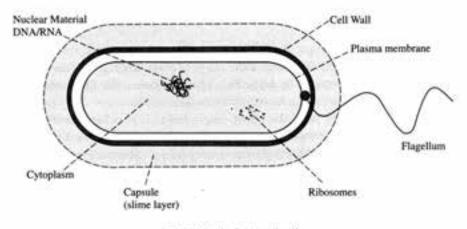


Fig. 14.4 The bacterial cell.

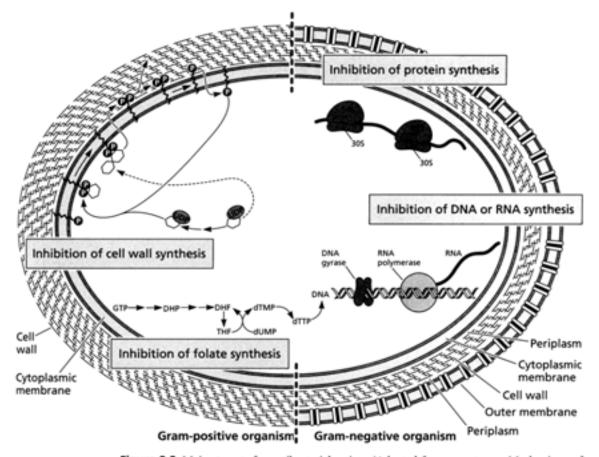


Figure 2.2 Major targets for antibacterial action. (Adapted from a poster on Mechanisms of Antibiotic Action and Resistance, C. Walsh, J. Trauger, P. Courvalin, and J. Davies [2001], Trends in Microbiology, The Lancet Infectious Disease, Current Opinion in Microbiology, Trends in Molecular Medicine.)

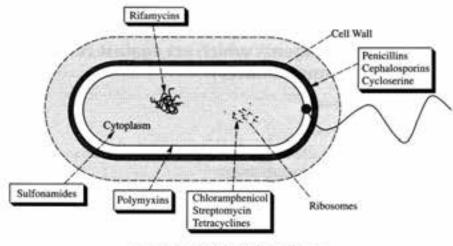


Fig. 14.5 Sites of antibacterial action.

Antibiotic	Target	Resistance mechanism
Cell wall β-Lactams	Transpeptidases/	B-Lactamases, PBP mutants
Vancomycin Teicoplanin	transglycosylases (PBPs ¹) p-Ala-p-Ala termini of peptidoglycan and of lipid II	Reprogramming of D-Ala-D-Ala to D-Ala-D-Lac or D-Ala-D-Ser
Protein synthesis Erythromycins Tetracyclines Aminoglycosides Oxazolidinones	Peptidyltransferase/ribosome Peptidyltransferase Peptidyltransferase Peptidyltransferase	rRNA methylation/efflux Drug efflux Drug modification Unknown
DNA replication / repair Fluoroquinolones	DNA gyrase	Gyrase mutations

Table 2.5 Major antibiotics: structural classes, targets, and resistance mechanisms

PBP, penicillin-binding protein.

Why is there a need for new antibiotics?

Table 1.1	Evolution of	resistance	to antibiotics
-----------	--------------	------------	----------------

Antibiotic	Year deployed	Resistance observed
Sulfonamides	1930s	1940s
Penicillin	1943	1946
Streptomycin	1943	1959
Chloramphenicol	1947	1959
Tetracycline	1948	1953
Erythromycin	1952	1988
Vancomycin	1956	1988
Methicillin	1960	1961
Ampicillin	1961	1973
Cephalosporins	1960s	late 1960s

From Palumbi (2001), with permission.

Table 1.1 Bacteria that have gained resistance to some drug therapy

Bacteria	Disease/disorder	Date (approx.)
Penicillin resistant Pneumococci Legionella Borrelia burgdorferi Salmonella Staphylococci E. coli O157:H7	Pneumonia, meningitis Legionnaire's disease (pneumonia) Lyme disease Gastrointestinal disorders Toxic Shock Syndrome Gastrointestinal disorders	mid 1970s-present mid 1970s-present 1980s-present 1980s-present 1980s mid 1980s-present
Multi-drug resistant M. tuberculosis	Tuberculosis	late 1980s-present
Vancomycin resistant Enterococci V. cholerae	Wound, blood and enteric infections Cholera	late 1980s-present present
Multi-drug resistant 'sup	er bugs'	77777

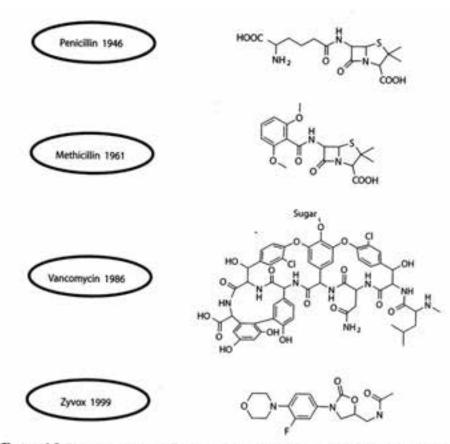


Figure 1.2 Progression of antibiotics required for efficacy in staphylococcal infections. (Adapted from Palumbi [2001], with permission.)

Why does resistance develop?

The large numbers of bacterial cells, combined with the short generation times facilitate the development of mutants. In a typical bacterial population of 10^{11} bacterial cells (e.g. in an infected patient) there can easily be 1000 mutants. If a mutant confers a selective advantage upon the bacterium (e.g. the ability to survive in the presence of an antibiotic) then that resistant bacterium will be selected

and continue to grow while its neighbors perish. This can happen in a matter of days in patients being treated with antibiotics.

B. Origins of antibiotics

1. Most classes of antibiotics, including the b-lactam antibiotics, tetracyclines, aminoglycosides, and macrolides. originally derived from natural sources, and were then further chemically modified to confer better properties on the drug.

2. However, some important classes of antibiotics (including the sulfa antibiotics, the quinolones, and the oxazolidinones) are man-made, originating totally from synthetic chemical operations.

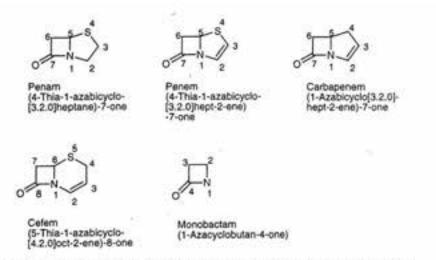


Fig. 34.9. Ring and numbering systems of clinically available β-lactam antibiotic types.

Table 34.3. Commercially Significant Penicillins and Related Molecules

RICOHN H H SCH				
Generic Name	Trade Name	R,	x	1
Fermentation-Derived Penicillins				-
6-Aminopenicillanic acid		н	11-1	
Benzylpenicillin (Penicillin G)	Generic	CeH-CH2-	-	
Phenoxymethylpenicillin (Penicillin V)	Generic	C_H_OCH_	-	
Semi-Synthetic Penicillinase-Resistant Parenteral Penicillins Methicillin		2004		
		N.		
		Land octo		
Nafcillin	Nallpen, Unipen	CHO 9	6428	
	rangent, oniperi	and the		- 5
Semi-Synthetic Penicillinase-Resistant Oral Penicillins		\sim		
Oxacilin	Bactocil 1	- A		
Cloxacillin	Cloxapen	120		- 2
Dicloxacillin	Dycil, Pathocil	a.	a	6
Semi-Synthetic Penicillinase-Sensitive, Broad Spectrum, Parenteral Penicillin Carbenizilin (R ₂ = H) Carbenicilin phenyl (R ₈ = C ₆ H ₆)	• •	CO ₂ M ₂	323	
Carbenicillin indanyl (ng = CIC)	Geocillin	U		- 1
Ticarcillin	Ticar	IT COM	-	
Aziocilin		Y		
Mezolcillin	Mezlin	. 111"	н	- 5
	wears 1	-O.te	CH450/-	
Piperacillin	Pipracil	~1,1,5"	_	2
emi-Synthetic Penicillinase-Sensitive, Broad-Spectrum, Oral Penicillins		Cyle Martin H		
Contraction of the second s	Principen, Omnipen	A New	H	-
Amoxicillin	Amoxil, Trimox,	, U°	HO	1
	Wymox	0.000	1757	

Table 34.8. First-generation Cephalosporins

RCOHIN H H S					
Generic Names	Trade Names	со _й н В	x	Salt	
Parenteral Agents: Cephapirin	Cefadyl	к)—вону-	04c	Na	
Cefazolin	Ancef, Kefzol, Zolicef	Non N-CHy-	Sty ou	Na	
Oral Agents: Cephalexin	Keflex, Biocef Keftab	Q.	н	HCI	
Cefadroxil	Duricef	"De	н	-	
Oral and Parenteral Agents: Cephradine	Velosef	Clo-	н	-	

Table 34.9. Second-generation Cephalosporins

ACOMY HZ									
Generic Name	Trade Name	R	COOH X	٧	z	Salt			
Parenteral Agents Cefamandole nafate	Mandoi	С	-04-52	н	5	~			
Cefonicid	Monocid	Q	-CH_8-8-0 ⁶¹ _N N-N		8	oha			
Cefurcxime	Ceftin Kefurox Zinacef	Or Noor	но,з/	н	5	Na			
Cefoxitin	Mefoxin	ŝ	-CHLOCONH,	004	5	Na			
Cefotetan	Cefotan	HUNOC - S-	0%-5-0 ^N N N-N	00%	s	dha			
Dral Agents		noto .	Hec						
Cefaclor	Ceclor	Q	٥	н	5	120			
Loracarbacef	Lorabid	Q.	o	н	сң	-			
Cefprozil	Cetzil	HO NHE	104	н		23			
		NH							

Table 34.10. Third-generation Cephalosporins

	RCOH	HH S		
Generic Name	C Trade Name	COOH R	x	Salt
Parenteral Agents Cefotaxime	Claforan	N-OCH3	CHUOAc	Na
Ceftizoxime	Cefizox	N-OCHS Hand	н	Na
Ceftriaxone	Rocephin	HAN-KS	-04/5 A.N.	diNa
Ceftazidime	Fortaz Ceptax Tazidime Tazicef	N	Ś	H or N
Cefoperazone	Cefobid	Color-NQN-W NH	-сне-вф ^N у _{N-N} нус	Na
Dral Agents Cefixime	Suprax	о" "о "	-HC=D4	-
Ceftibuten	Cedax	NT H	н	-
$ \begin{pmatrix} \text{Cetpodoxime proxecil} \\ 2\text{-carboxyesters} & \text{CH}_{9}^{0} & \text{CH}_{9} \\ \text{CH}_{9}^{0} & \text{CH}_{9} \end{pmatrix} $	1	HUN-US	-CH ₄ OCH,	22
Cefdinir	Omnicef	N.CH	-HC=CHr	

- I. Penicillins
 - A. History
 - 1. 1928: Alexander Fleming noticed killing effect of mold accidentally blown onto his agar plate. After attempt at isolation of compound responsible, judged to be too unstable for use as antibiotic
 - 2. 1938, Problem of isolating penicillin solved by Florey and Chain using a process called "freeze drying" now called lyophilization.
 - 3. 1941, first clinical trial of penicillin were successful
 - 4. 1944, used against casualties in D-day landing
 - 5. 1945, structure of penicillin finally solved
 - B. Show structure of Benzylpenicillin (Penicillin G)
 - 1. Structure was solved by x-ray crystallography by Dorothy Hodgkins
 - 2. Previous to this, such a structure was proposed but was said to be "impossibly strained"
 - C. Key features of structure
 - 1. β -lactam ring
 - a. "Lactam" is a word for any cyclic amide (the word "lactone" is used for a cyclic ester)
 - b. a β -lactam means that the nitrogen is joined to the carbon which is beta to the carbonyl
 - c. this creates strain in the ring, since it is a four membered ring
 - d. b-lactam becomes good acylating agent for active site serine of penicillin binding protein (see later)
 - 2. Carboxylate
 - a. Negatively charged at neutral pH
 - b. Anchors drug in active site pocket (positively charged)
 - 3. Acylamido side chain
 - a. Necessary for biological potency
 - b. Proper stereochemistry of attachment to ring essential for activity
 - c. Variation at side chain can dramatically affect biological activity against various strains of bacteria
 - D. Common Early Penicillins
 - 1. Penicillin G had to be administered parenterally, since it is not acid stable
 - 2. Penicillin V has more acid stability, and can be administered orally

How Does Penicillin Work?

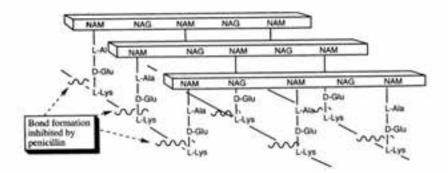


Fig. 14.60 Peptidoglycan structure.

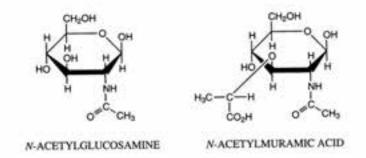
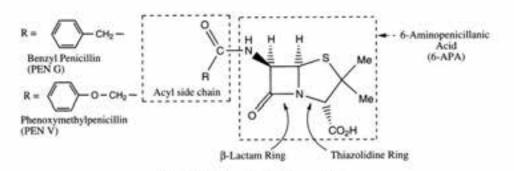



Fig. 14.61 Sugars contained in cell wall structure of bacteria.

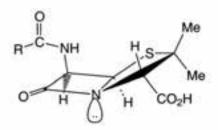


Fig. 14.20 Shape of penicillin.

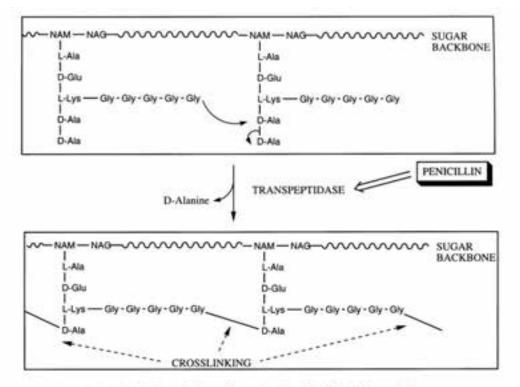
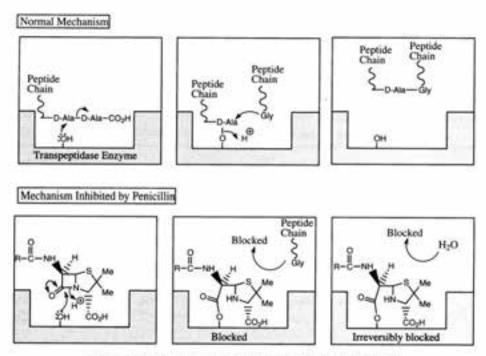
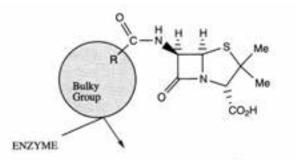


Fig. 14.62 Cross-linking of bacteria cell walls inhibited by penicillin.




Fig. 14.63 Cross-linking mechanism by transpeptidase enzyme.

II. Penicillin Resistance due to β -Lactamase

- A. What is β-lactamase?B. Why is it a problem?

III. Penicillins: Part II

- A. Methicillin: A drug designed to be resistant to b-lactamase (previously called penicillinase).
 - 1. Structure of methicillin
 - 2. Notice "steric shield" on side chain to protect b-lactam from hydrolysis
 - 3. Biological activity & pharmacokinetics of methicillin
 - a. Has to be administer parenterally, since it has no electron withdrawing group on the side chain
 - b. Inactive against gram negative bacteria

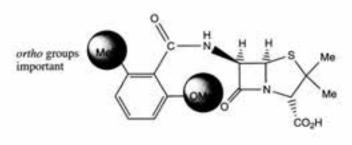
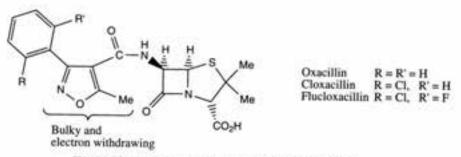



Fig. 14.32 Methicillin.

- B. Oxacillin
 - 1. Still resistant to b-lactamases
 - 2. More acid stability than methicillin

- C. Better Gram-negative activity: Ampicillin and Amoxicillin
 - 1. Attaching a hydrophilic group to the side chain seemed to give the drug better Gram negative activity
 - 2. This was achieved by employing an amino substituent directly adjacent to carbonyl of side chain
 - 3. Still inactive agains Pseudomonas aeruginosa, a particularly challenging pathogen
 - 4. Sometimes administered as prodrugs (esters) due to poor absorption through the gut (show pivampicillin structure)

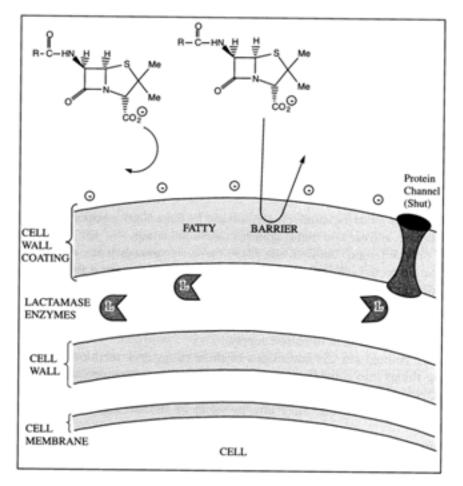
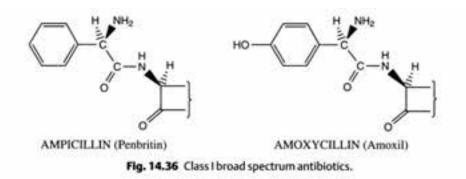



Fig. 14.34 Permeability barrier of a Gram-negative bacterial cell.

- D. Best activity against Gram-negative organisms, including Pseudomonas aeuruginosa: carbenicillin
- II. Cephalosporins:
 - A. History
 - 1. First isolated from fungus found in sewer line on island of Sardina in 1948
 - 2. Structure wasn't elucidated until 1961
 - B. Prototypical Early cephalosporin: Cephalothin
 - 1. Less antibiotic activity than Penicillin G against Gram positive bacteria
 - 2. More activity than Pen G against Gram negative bacteria
 - 3. Can be used on patients who are allergic to penicillin
 - 4. Side chain acetoxy group is hot point for metabolic inactivation

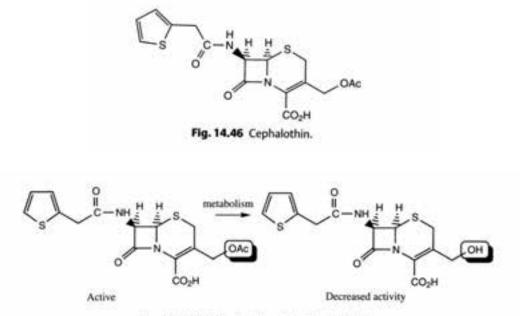


Fig. 14.47 Metabolic hydrolysis of cephalothin.

- C. Cephaloridine
 - 1. Better leaving group in form of positively charged pyridinium group will "activate" system
 - 2. Avoids metabolic inactivation

3. Note that compound is "zwitterion"

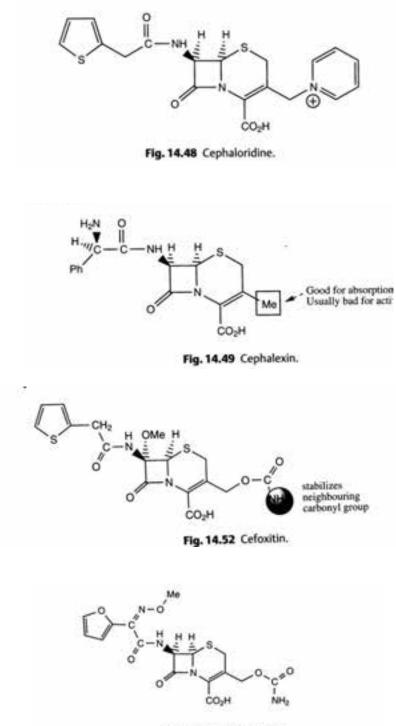
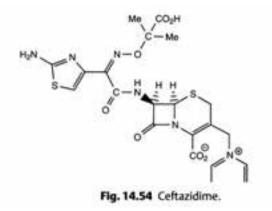



Fig. 14.53 Cefuroxime.

D. Ceftazidime

- 1. Combines activation of ceftazidime with steric shielding of b-lactam to protect it from hydrolysis by b-lactamase
- 2. Note additional hydrophilic groups on side chain further improve activity against gram negative strains.

