Regression and Correlation Analysis

Correlation vs. Scatter Plots

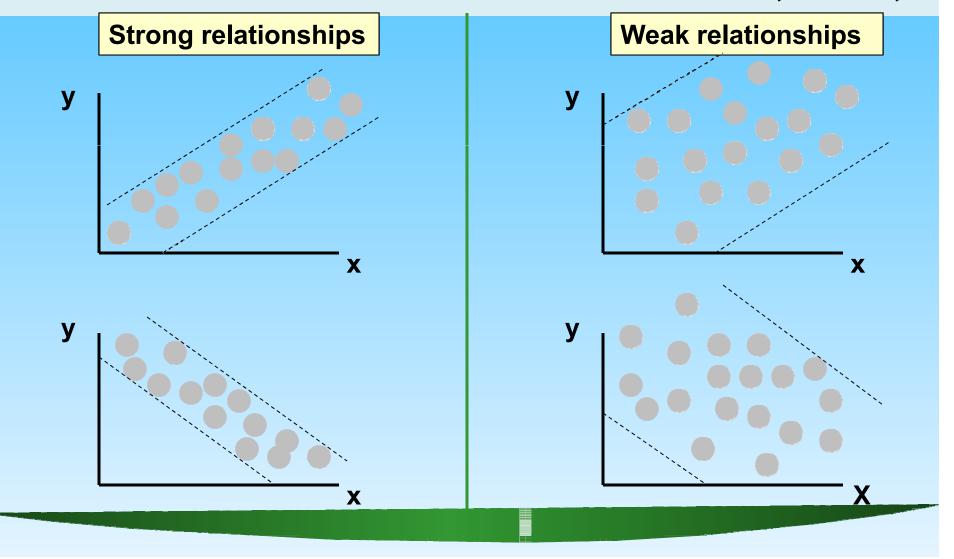
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
 - Only concerned with strength of the relationship
 - No causal effect is implied
- A scatter plot (or scatter diagram) is used to show the relationship between two variables

Scatter Plot Examples

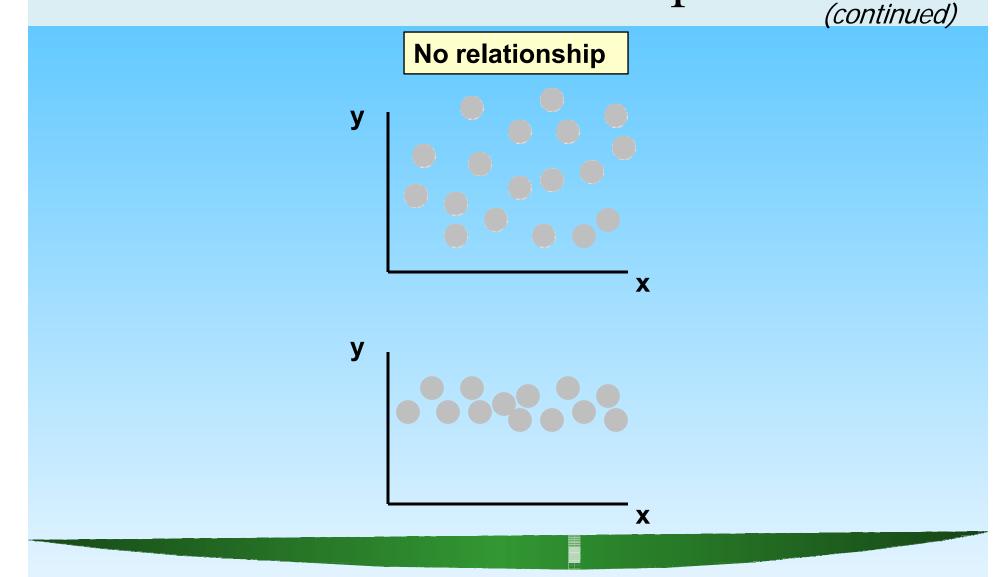


Scatter Plot Examples

(continued)



Scatter Plot Examples



Correlation Coefficient

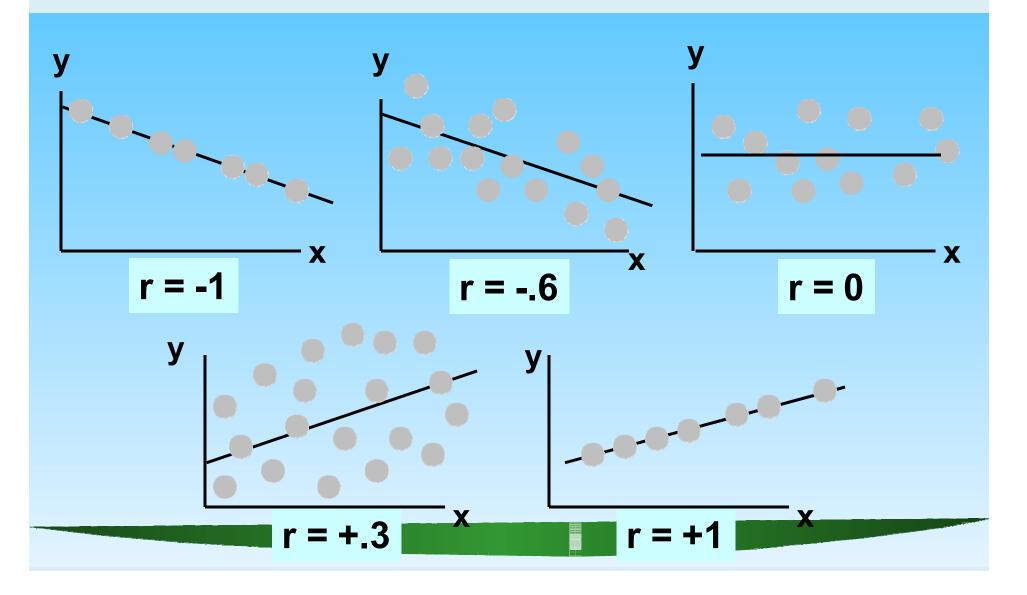
(continued)

- The population correlation coefficient ρ (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Features of ρ and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Examples of Approximate r Values



Calculating the Correlation Coefficient

Sample correlation coefficient:

$$\overline{Y} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\left[\sum (x - \overline{x})^2\right]\left[\sum (y - \overline{y})^2\right]}}$$

or the algebraic equivalent:

$$r = \frac{n \sum xy - \sum x \sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$

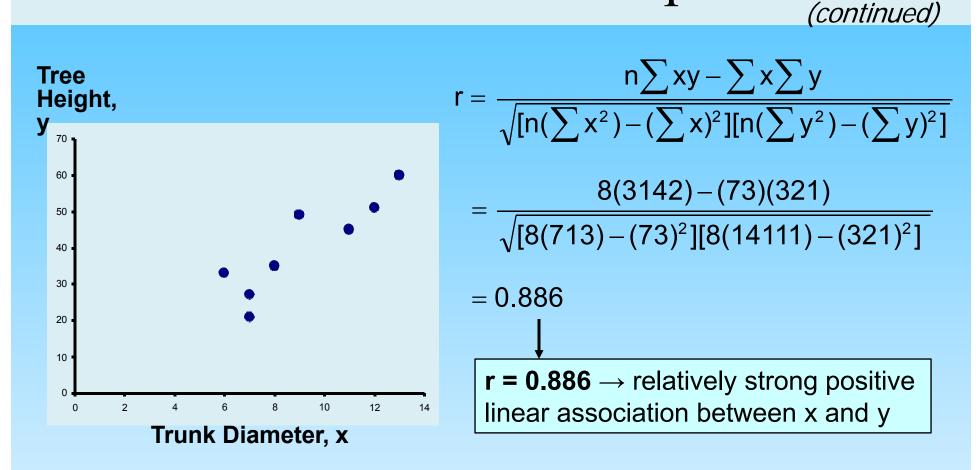
where:

- r = Sample correlation coefficient
- n = Sample size
- x = Value of the independent variable
- y = Value of the dependent variable

Calculation Example

Tree Height	Trunk Diameter			
У	X	ху	y ²	X ²
35	8	280	1225	64
49	9	441	2401	81
27	7	189	729	49
33	6	198	1089	36
60	13	780	3600	169
21	7	147	441	49
45	11	495	2025	121
51	12	612	2601	144
Σ=321	Σ =73	Σ=3142	Σ=14111	Σ=713

Calculation Example



Excel Output

Excel Correlation Output

Tools / data analysis / correlation...

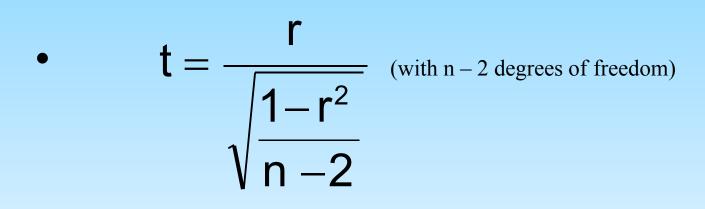
		Tree He	eight	Trunk Diameter
Tree Height			1	
Trunk Diameter		0.88	36231	1
	Correlation between			
	Tree Height and Trunk Diameter			

Significance Test for Correlation

Hypotheses

H₀: ρ = 0 (no correlation) H_A: $ρ \neq 0$ (correlation exists)

Test statistic



Example: Produce Stores

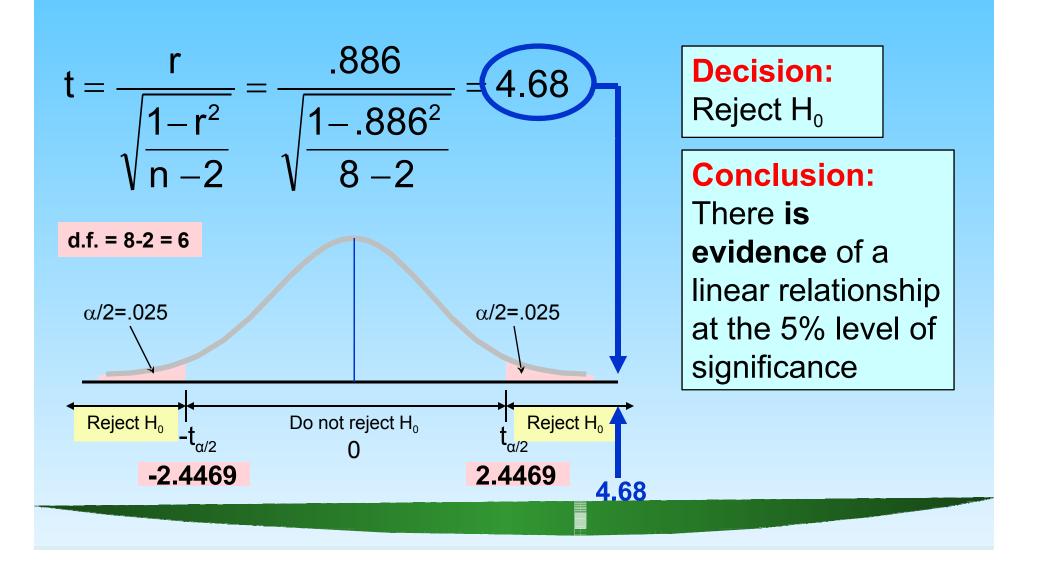
Is there evidence of a linear relationship between tree height and trunk diameter at the 0.05 level of significance?

 $H_0: \rho = 0$ (No correlation) $H_1: \rho \neq 0$ (correlation exists)

 $\alpha = .05$, df = 8 - 2 = 6

$$t = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{0.886}{\sqrt{\frac{1 - 0.886^2}{8 - 2}}} = 4.68$$

Example: Test Solution



Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

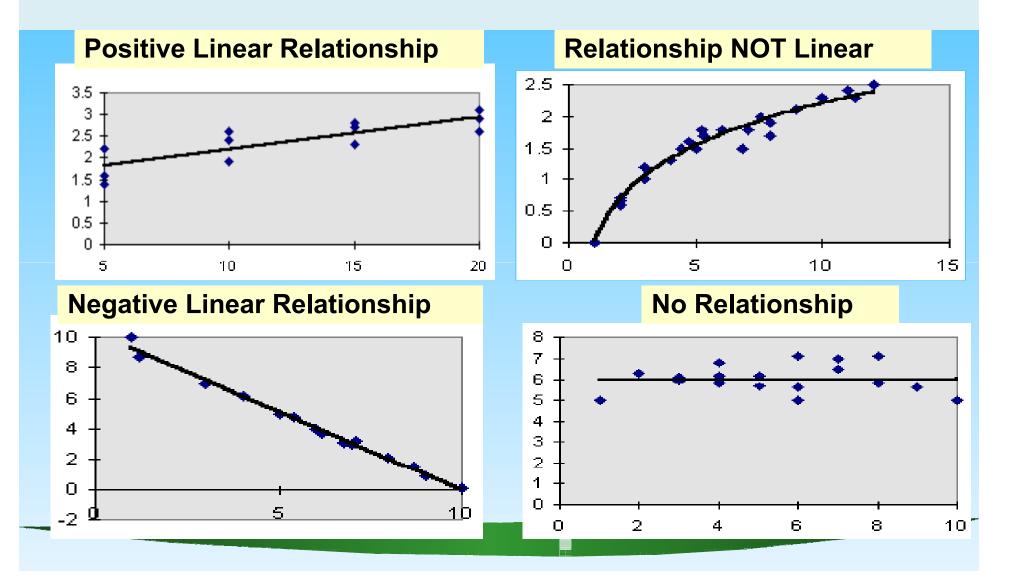
Dependent variable: the variable we wish to explain

Independent variable: the variable used to explain the dependent variable

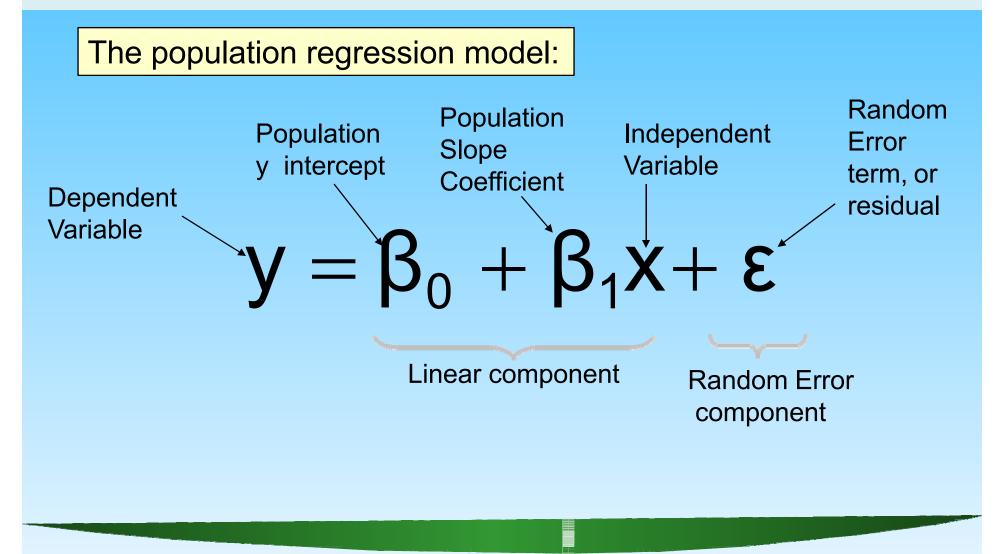
Simple Linear Regression Model

- Only **one** independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Types of Regression Models

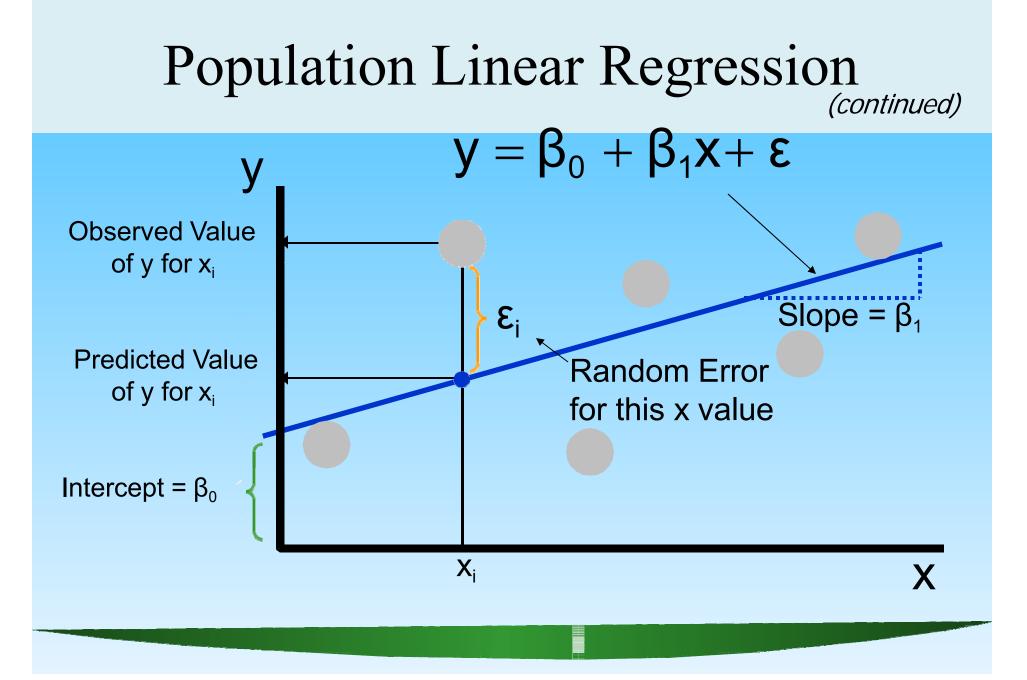


Population Linear Regression



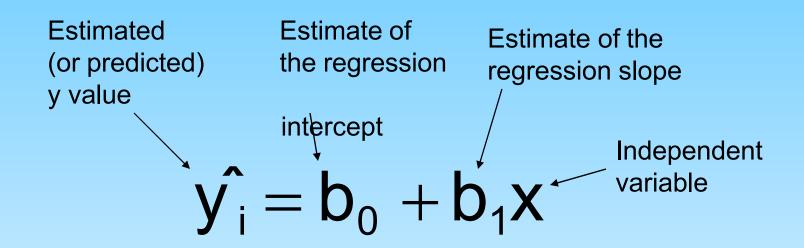
Linear Regression Assumptions

- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear



Estimated Regression Model

The sample regression line provides an estimate of the population regression line



The individual random error terms e_i have a mean of zero

Least Squares Criterion

b₀ and b₁ are obtained by finding the values of b₀
 and b₁ that minimize the sum of the squared residuals

$$\sum e^{2} = \sum (y - \hat{y})^{2}$$
$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

The Least Squares Equation

• The formulas for b_1 and b_0 are:

$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

algebraic equivalent:

$$b_{1} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}}$$

and

 $b_0 = \overline{y} - b_1 \overline{x}$

Interpretation of the Slope and the Intercept

- b₀ is the estimated average value of y when the value of x is zero
- b₁ is the estimated change in the average value
 of y as a result of a one-unit change in x

Finding the Least Squares Equation

- The coefficients b₀ and b₁ will usually be found using computer software, such as Excel or Minitab
- Other regression measures will also be computed as part of computer-based regression analysis

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (y) = house price in \$1000s
 - Independent variable (x) = square feet

Sample Data for House Price Model

House Price in \$1000s	Square Feet
(y)	(X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Regression Using Excel

? ×

OK.

Help

Residual Plots

Line Fit Plots

Tools / Data Analysis / Regression 🔀 Microsoft Excel - 13data.xls 🔊 File Edit Yiew Insert Format Tools <u>D</u>ata <u>W</u>indow <u>H</u>elp Acrobat □ ☞ 🖬 勉 / 毎 逸 ♡ | 牀 階 亀 - ダ | ∽ - ∽ - 🚷 Σ - 尨 Ω 쉬 값 🏙 🚜 100% - ⑦ 桷 紫 ᄬ 🗄 │B Z U│≣ ≣ ≣ ፼│\$%, \$8,\$8 僅 僅│ • 쳋 • ▲ • Q Q @ Ю - -Chart 1 fx Regression В A -Input-Square Feet House Price 1 • \$A\$1:\$A\$11 Input Y Range: 245 1400 Cancel 2 • Input X Range: \$B\$1:\$B\$11 312 1600 3 ✓ Labels Constant is Zero 279 1700 4 Confidence Level: 95 % 308 1875 5 199 1100 -Output options -6 . Output Range: 219 1550 7 • New Worksheet Ply: 405 2350 8 O New Workbook

-Residuals-

Residuals

-Normal Probability

Standardized Residuals

Normal Probability Plots

2450

1425

1700

324

319

255

9

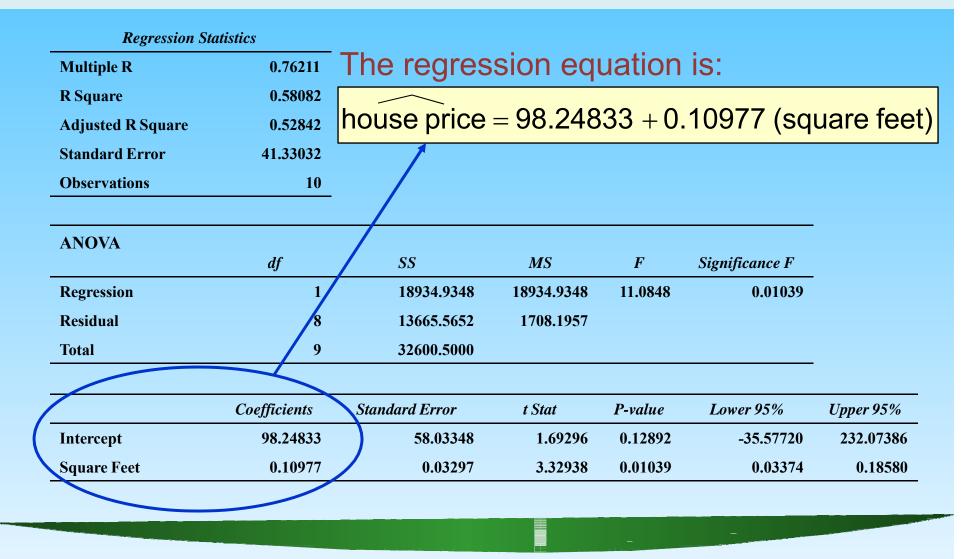
10

11 12

13

14 15 4.00

Excel Output



Graphical Presentation

House price model: scatter plot and regression line

