Regression and

Correlation
Analysis

Correlation vs. Scatter Plots

- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
- Only concerned with strength of the relationship
- No causal effect is implied
- A scatter plot (or scatter diagram) is used to show the relationship between two variables

Scatter Plot Examples

Scatter Plot Examples

Scatter Plot Examples

No relationship

Correlation Coefficient

- The population correlation coefficient ρ (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of ρ and is used to measure the strength of the linear relationship in the sample observations

Features of ρ and r

- Unit free
- Range between -1 and 1
- The closer to -1 , the stronger the negative linear relationship
- The closer to 1 , the stronger the positive linear relationship
- The closer to 0 , the weaker the linear relationship

Examples of Approximate r Values

Calculating the Correlation Coefficient

Sample correlation coefficient:

$$
r=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\left[\sum(x-\bar{x})^{2}\right]\left[\sum(y-\bar{y})^{2}\right]}}
$$

or the algebraic equivalent:

$$
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}\right]}}
$$

where:
$r=$ Sample correlation coefficient
$\mathrm{n}=$ Sample size
$x=$ Value of the independent variable
$y=$ Value of the dependent variable

Calculation Example

Tree Height	Trunk Diameter			
\mathbf{y}	\mathbf{x}	$\mathbf{x y}$	$\mathbf{y}^{\mathbf{2}}$	$\mathbf{x}^{\mathbf{2}}$
35	8	280	1225	64
49	9	441	2401	81
27	7	189	729	49
33	6	198	1089	36
60	13	780	3600	169
21	7	147	441	49
45	11	495	2025	121
51	12	612	2601	144
$\Sigma=\mathbf{3 2 1}$	$\Sigma=\mathbf{7 3}$	$\Sigma=\mathbf{3 1 4 2}$	$\Sigma=\mathbf{1 4 1 1 1}$	$\Sigma=\mathbf{7 1 3}$

Calculation Example

$$
\begin{aligned}
& r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left[n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}\right]\left[n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}\right]}} \\
&=\frac{8(3142)-(73)(321)}{\sqrt{\left[8(713)-(73)^{2}\right]\left[8(14111)-(321)^{2}\right]}} \\
&=0.886 \\
& \\
& \begin{array}{l}
r=0.886 \rightarrow \text { relatively strong positive } \\
\text { linear association between } x \text { and } y
\end{array}
\end{aligned}
$$

Excel Output

Excel Correlation Output

Tools / data analysis / correlation...

Significance Test for Correlation

- Hypotheses

$$
\begin{aligned}
& \mathrm{H}_{0} \cdot \rho=0 \text { (no correlation) } \\
& \mathrm{H}_{A}: \rho \neq 0 \text { (correlation exists) }
\end{aligned}
$$

- Test statistic

$$
t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}(\text { with } n-2 \text { degres of freedom) }
$$

Example: Produce Stores

Is there evidence of a linear relationship between tree height and trunk diameter at the 0.05 level of significance?

$$
\begin{gathered}
\begin{array}{|ll|}
\hline H_{0}: \rho=0 & \text { (No correlation) } \\
H_{1}: \rho \neq 0 & \text { (correlation exists) }
\end{array} \\
\alpha=.05, \quad \mathrm{df}=8-2=6 \\
\mathrm{t}=\frac{\mathrm{r}}{\sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}-2}}}=\frac{0.886}{\sqrt{\frac{1-0.886^{2}}{8-2}}}=4.68
\end{gathered}
$$

Example: Test Solution

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain
Independent variable: the variable used to explain the dependent variable

Simple Linear Regression Model

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in X

Types of Regression Models

Negative Linear Relationship

Relationship NOT Linear

No Relationship

Population Linear Regression

The population regression model:

Population

y intercept \begin{tabular}{l}
Population

Slope

Coefficient

Independent

Random

Variable
\end{tabular}

Linear Regression Assumptions

- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear

Population Linear Regression

Estimated Regression Model

The sample regression line provides an estimate of the population regression line

The individual random error terms e_{i} have a mean of zero

Least Squares Criterion

- b_{0} and b_{1} are obtained by finding the values of b_{0} and b_{1} that minimize the sum of the squared residuals

$$
\begin{aligned}
\sum e^{2} & =\sum(y-\hat{y})^{2} \\
& =\sum\left(y-\left(b_{0}+b_{1} x\right)\right)^{2}
\end{aligned}
$$

The Least Squares Equation

- The formulas for b_{1} and b_{0} are:

$$
b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

algebraic equivalent:

$$
b_{1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

Interpretation of the Slope and the Intercept

- b_{0} is the estimated average value of y when the value of x is zero
- b_{1} is the estimated change in the average value of y as a result of a one-unit change in x

Finding the Least Squares Equation

- The coefficients b_{0} and b_{1} will usually be found using computer software, such as Excel or Minitab
- Other regression measures will also be computed as part of computer-based regression analysis

Simple Linear Regression Example

A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)

- A random sample of 10 houses is selected
- Dependent variable $(\mathrm{y})=$ house price in $\$ 1000$ s
- Independent variable (x) = square feet

Sample Data for House Price Model

	House Price in $\$ 1000$ s (y)	Square Feet (x)
	245	1400
	312	1600
	279	1700
	308	1875
	199	1100
	219	1550
	405	2350
	324	2450
	319	1425
	255	1700

Regression Using Excel

- Tools / Data Analvsis / Regression

图Microsoft Excel - 13data.xls

Excel Output

Graphical Presentation

- House price model: scatter plot and regression line

