LECTURE CONNECTIONS

Α.

Pierce

Benjamin

Chromosome Variation

Outline

- Chromosome Mutations Include Rearrangements, Aneuploids, and Polyploids, 238
- Chromosome Rearrangements Alter Chromosome Structure, 240
- Aneuploidy Is an Increase or Decrease in the Number of Individual Chromosomes, 249
- Polyploidy Is the Presence of More than Two Sets of Chromosomes, 255
- Chromosome Variation Plays an Important Role in Evolution, 260

Chapter 9 Opener Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Chromosome Mutations Include Rearrangements, Aneuploids, and Polyploids

- Chromosome Morphology (position of the centromere on the chromosome):
 - Metacentric
 - Submetacentric
 - Acrocentric
 - Telocentric

Figure 9-1 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Human Karyotype

Figure 9-2a Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-2b Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-2c Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-2d Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

R Banding C-G rich

Types of Chromosome Mutations

Figure 9-3 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company Chromosome Rearrangements Alter Chromosome Structure

- Duplication
 - Tandem
 - Reverse
 - Displaced

© 2009 W.H.Freeman and Company

Figure 9-5 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Bar Phenotype

Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Figure 9-7 part 1 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Figure 9-7 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Unbalanced gene dosage leads to developmental abnormalities

Figure 9-8 part 1 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Figure 9-8 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

9.2 Chromosome Rearrangements Alter Chromosome Structure

Deletions

Figure 9-4b Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Figure 9-10 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Table 9.1 Effects of some human chromosome rearrangements			
Type of Rearrangement	Chromosome	Disorder	Symptoms
Duplication	4, short arm	()	Small head, short neck, low hairline, growth and mental retardation
Duplication	4, long arm	-	Small head, sloping forehead, hand abnormalities
Duplication	7, long arm	2 7 - 3 2)	Delayed development, asymmetry of the head, fuzzy scalp, small nose, low-set ears
Duplication	9, short arm	-	Characteristic face, variable mental retardation, high and broad forehead, hand abnormalities
Deletion	5, short arm	Cri-du-chat syndrome	Small head, distinctive cry, widely spaced eyes, round face, mental retardation
Deletion	4, short arm	Wolf-Hirschhorn syndrome	Small head with high forehead, wide nose, cleft lip and palate, severe mental retardation
Deletion	4, long arm	-	Small head, from mild to moderate mental retardation, cleft lip and palate, hand and foot abnormalities
Deletion	7, long arm	Williams-Beuren syndrome	Facial features, heart defects, mental impairment
Deletion	15, long arm	Prader–Willi syndrome	Feeding difficulty at early age, but becoming obese after 1 year of age, from mild to moderate mental retardation
Deletion	18, short arm	-	Round face, large low-set ears, from mild to moderate mental retardation

Distinctive mouth shape, small hands, small head,

mental retardation

Table 9-1 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

18, long arm

-

Deletion

Chromosome Rearrangements Alter Chromosome Structure

- **Inversion** (depends on the involvement of the centromere in the inversion):
 - Paracentric inversion
 - Pericentric inversion

Figure 9-12 part 1 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-12 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-12 part 3 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-13 part 1 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-13 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Conclusion: Recombinant gametes are nonviable because genes are either missing or present in too many copies.

Figure 9-13 part 4 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Translocation

- Nonreciprocal translocation
- Reciprocal translocation
- Robertsonian translocation

© 2009 W.H. Freeman and Company

In a translocation, a segment of a chromosome moves from one chromosome to a nonhomologous chromosome or to another place on the same chromosome.

Figure 9-16

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-16 part 1 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Conclusion: Gametes resulting from adjacent-I and adjacent-2 segregation are nonviable because some genes are present in two copies, whereas others are missing.

Fragile Sites

Figure 9-18 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Figure 9-17 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Aneuploidy

Unnumbered 9 p266 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Once in a Blue Moon

Crosses Between Horses & Donkeys

9.3 Aneuploidy Is an Increase or Decrease in the Number of Individual Chromosomes

- Causes of Aneuploidy:
 - Deletion of centromere during mitosis and meiosis
 - Robertsonian translocation
 - Nondisjunction during meiosis and mitosis

Types of Aneuploidy

- Nullisomy: loss of both members of a homologous pair of chromosomes. 2n – 2
- Monosomy: loss of a single chromosome.
 2n 1
- **Trisomy:** gain of a single chromosome. 2*n* + 1
- Tetrasomy: gain of two homologous chromosomes. 2n + 2

Figure 9-20 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Effects of Aneuploidy

- Drastically altered phenotype
- Due to gene dosage
- Exception: X chromosome in mammals

Production: Nondisjunction in Meiosis I

Figure 9-19a Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Production: Nondisjunction in Meiosis II

Figure 9-19b Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Production: Nondisjunction in Mitosis

Figure 9-19c Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

- Autosomal aneuploids:
 - Trisomy 21 Down syndrome
 - Primary Down syndrome, 75% random nondisjunction in egg formation
 - Familial Down syndrome, Robertsonian translocation between chromosomes 14 and 21

- Autosomal aneuploids:
 - Trisomy 18 Edward syndrome, 1/8000 live births
 - Trisomy 13 Patau syndrome, 1/15,000 live births
 - Trisomy 8 1/25,000 ~ 1/50,000 live births
 - Why is there a drastic decrease in frequency of these trisomic syndromes from chromosome 18 to chromosome 8?

- Autosomal aneuploids:
 - Aneuploidy and maternal age
 - Possible interpretation of this connection
- Uniparental disomy: Both chromosomes are inherited from the same parent.
 - Mosaicism and nondisjunction in mitotic division

- Sex-chromosome aneuploids:
 - Turner syndrome. XO
 - Klinefelter sydrome. XXY

Primary Down Syndrome

Constraints	Constant of the	APAR I	K	H-Rapped	1	, in the second s
1	2		3	4		5
((()		12	Ť.Ť	11 FF
6	7	8	9	10	11	12
11	-	11		1	11	100
13	14	15		16	17	18
1 9	11 20	21	: : 22	1		ģ
				х		Y

Figure 9-21 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Familial Down Syndrome

Figure 9-22 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-25 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Polyploidy

Polyploidy Is the Presence of More than Two Sets of Chromosomes

• Autopolyploidy:

From single species

• Allopolyploidy:

From two species

Figure 9-26a Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-26b Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-27 Genetics: A Conceptual Approach, Third Edition © 2009 W.H. Freeman and Company

Figure 9-28 part 1 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-28 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-29 part 2 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

Figure 9-29 part 3 Genetics: A Conceptual Approach, Third Edition © 2009 W. H. Freeman and Company

The Significance of Polyploidy

Table 9.2 Examples of polyploid crop plants						
Plant	Type of Polyploidy	Ploidy	Chromosome Number			
Potato	Autopolyploid	4 <i>n</i>	48			
Banana	Autopolyploid	3 <i>n</i>	33			
Peanut	Autopolyploid	4 <i>n</i>	40			
Sweet potato	Autopolyploid	6 <i>n</i>	90			
Tobacco	Allopolyploid	4 <i>n</i>	48			
Cotton	Allopolyploid	4 <i>n</i>	52			
Wheat	Allopolyploid	6 <i>n</i>	42			
Oats	Allopolyploid	6 <i>n</i>	42			
Sugar cane	Allopolyploid	8 <i>n</i>	80			
Strawberry	Allopolyploid	8 <i>n</i>	56			

Source: After F. C. Elliot, *Plant Breeding and Cytogenetics* (New York: McGraw-Hill, 1958).
Table 9.3 Different types of chromosome mutations

Chromosome Mutation	Definition
Chromosome rearrangement	Change in chromosome structure
Chromosome duplication	Duplication of a chromosome segment
Chromosome deletion	Deletion of a chromosome segment
Inversion	Chromosome segment inverted 180 degrees
Paracentric inversion	Inversion that does not include the centromere in the inverted region
Pericentric inversion	Inversion that includes the centromere in the inverted region
Translocation	Movement of a chromosome segment to a nonhomologous chromosome or to another region of the same chromosome
Nonreciprocal translocation	Movement of a chromosome segment to a nonhomologous chromosome or to another region of the same chromosome without reciprocal exchange
Reciprocal translocation	Exchange between segments of nonhomologous chromosomes or between regions of the same chromosome
Aneuploidy	Change in number of individual chromosomes
Nullisomy	Loss of both members of a homologous pair
Monosomy	Loss of one member of a homologous pair
Trisomy	Gain of one chromosome, resulting in three homologous chromosomes
Tetrasomy	Gain of two homologous chromosomes, resulting in four homologous chromosomes
Polyploidy	Addition of entire chromosome sets
Autopolyploidy	Polyploidy in which extra chromosome sets are derived from the same species
Allopolyploidy	Polyploidy in which extra chromosome sets are derived from two or more species

Chromosome Variation Plays an Important Role in Evolution

- New and extra copies of genes give rise to new functions.
- New and extra sets of genes may give rise to new species.

Summary