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3.1 Introduction

The hypothalamic-pituitary-adrenal (HPA) axis out-
lines the tight hormonal coupling of the hypothala-
mus, the anterior pituitary and the adrenal cortex
(Fig. 1). A linear progression characterizes the down-
stream activation of the axis while reciprocal feedback
loops exist at each level to fine-tune the potency of the
response and ensure optimal hormone secretions.The
HPA axis is a vital component of the stress system and
mediates a variety of adaptive responses to stressors
that threaten body homeostasis. Basal and stress-
related homeostasis depend on the integrity of the
HPA axis, which additionally exerts profound regula-
tory effects on other systems (immune,endocrine and
metabolic) in order to orchestrate a response that will
allow endurance against any imposed challenge and
preserve the internal milieu. Dysfunction at any level
of the HPA axis can cause either prolonged or inade-
quate activation and leads to syndromal states that
consistently share various degrees of impaired re-
sponse to stress.

3 Hypothalamic-Pituitary-Adrenal Axis
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Fig. 1. A schematic representation of the components of the
hypothalamic-pituitary-adrenal axis and their hormonal in-
teractions. Stimulatory effects are represented by solid lines
and inhibitory effects by dashed lines (CRH, corticotropin-
releasing hormone; AVP, arginine vasopressin)



3.2 HPA Axis:
A Multilevel Endocrine System

3.2.1 Hypothalamus: Corticotropin-Releasing
Hormone and Arginine Vasopressin

The hypothesis that pituitary corticotropin (ACTH)
secretion is controlled by a hypothalamic factor was
first suggested in the late 1940s.A decade later, in vitro
studies supported the existence of such a hypothala-
mic corticotropin-releasing factor by demonstrating
that hypothalamic extracts could stimulate pituitary
corticotroph cells to secrete ACTH. In 1981, Vale and
his colleagues announced the sequence of a 41-amino-
acid peptide from ovine hypothalami, designated cor-
ticotropin-releasing hormone (CRH), which showed
greater ACTH-releasing potency in vitro and in vivo
than any other previously identified endogenous or
synthetic peptide.

Following the isolation of CRH, data from anatom-
ic, pharmacologic, and behavioral studies made evi-
dent that CRH not only triggers the hormonal cascade
of the HPA axis but also plays a complex role in the
response to stressors. The wide distribution of CRH
receptors in many extrahypothalamic sites of the
brain, including parts of the limbic system and the
central arousal-sympathetic systems in the brain stem
and spinal cord, suggests the implication of CRH in a
broader spectrum of neural circuits that control the
stress response. In addition, experimental studies
proved that central administration of CRH sets into
motion a coordinated series of physiologic and be-
havioral responses, which apart from the activation 
of the pituitary-adrenal axis and the sympathetic
nervous system, also include enhanced arousal, sup-
pression of appetite and sexual behaviors, hypothala-
mic hypogonadism, and changes in motor activity, all
characteristic of stress behaviors [95, 105, 110]. Con-
versely, central administration of CRH peptide antag-
onists suppresses many aspects of the stress response.
Finally, CRH type 1 receptor knockout mice are char-
acterized by a striking failure to properly answer to in-
duced stress [108].

An intricate neuronal network regulates the secre-
tion of hypothalamic CRH from parvicellular neurons
of the paraventricular nucleus (PVN) (Fig. 2). These
neurons have axons that terminate in the median em-
inence and secrete CRH into the hypophyseal portal
system and axons that terminate in the locus ceruleus
(LC)/norepinephrine (NE) sympathetic system neurons
in the brainstem [28, 101]. Neurons of the latter sys-
tems send projections, mostly noradrenergic, to the

PVN [30]. Thus, a reverberatory neural circuit is
formed between the CRH neurons and those of the
LC/NE sympathetic systems, with CRH and nor-
epinephrine stimulating each other (Fig. 2) [16, 125].
Furthermore, CRH activates an ultra-short negative
feedback loop on the CRH neurons [18], while a
similar loop exists in the LC/NE-sympathetic system
neurons,with norepinephrine inhibiting its own secre-
tion via collateral branches and inhibitory a2-nor-
adrenergic receptors [1, 41]. In addition, neurotrans-
mitters from parallel neuronal systems, like serotonin,
acetylcholine,catecholamines (a1-receptors) and neu-
ropeptide Y, stimulate CRH secretion [18, 44], whereas
the GABA/benzodiazepine system and endogenous
opioids exert inhibitory effects [17, 82]. Regulatory
opioid peptides are also produced by arcuate nucleus
proopiomelanocortin (POMC) neurons that produce
ACTH, a-MSH, and b-endorphin, all of which are
inhibitory to CRH secretion [17, 82], and by CRH and
arginine vasopressin (AVP) neurons which co-secrete
dynorphin along with CRH and AVP [97].A significant
long negative feedback loop is also mediated by the
glucocorticoids released from the adrenal cortex in
response to ACTH in order to inhibit the prolongation
of pituitary ACTH secretion and the activation of the
hypothalamic CRH neurons and the LC/NE sympa-
thetic systems [18,71].It is obvious that CRH secretion
is tightly interweaved in the neurocircuitry of stress,
which utilizes a complex network of interacting path-
ways in order to initiate and orchestrate an effective re-
sponse to stressors.

In the hormonal cascade of the HPA axis activation,
CRH exerts its effect on pituitary ACTH secretion via
high-affinity transmembrane CRH receptors on the
corticotrophs that couple to guanine nucleotide-
binding proteins and stimulate the release of ACTH by 
a cAMP-dependent mechanism [2]. In addition to
enhancing ACTH secretion, CRH also stimulates the
de novo biosynthesis of POMC, the ACTH precursor,
in corticotrophs resulting in a biphasic release of
ACTH [71]. Two distinct CRH receptor subtypes
(CRH-R1 and CRH-R2) have been characterized,
encoded by distinct genes that are differentially ex-
pressed [21, 121]. CRH-R1 is the most abundant sub-
type found in anterior pituitary and is also widely
distributed in the brain. The CRH-R2 subtype is ex-
pressed mainly in the peripheral vasculature and the
heart, as well as in subcortical structures of the brain
[132]. It is notable that CRH availability is also regu-
lated by specific binding of the peptide to CRH bind-
ing protein [83], with which it partially colocalizes in
various tissues [84].
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At the level of the anterior pituitary, CRH is the
most potent but not the sole regulator of the corti-
cotroph ACTH secretion. AVP, a nonapeptide also
produced by parvicellular neurons of the PVN and
secreted into the hypophyseal portal system, is con-
sidered the second most important modulator of
pituitary ACTH secretion [9]. Whereas CRH appears 
to directly stimulate the ACTH secretion, AVP and
other factors, such as angiotensin II, have synergistic
or additive effects [45, 94, 124]. AVP shows synergy
with CRH in vivo, when the peptides are coadminis-
tered in humans [67].Furthermore,physiologic eleva-
tions of plasma AVP in response to hyperosmolality,
apparently produced by magnocellular neurons of
the PVN, have additive rather than synergistic effects
with CRH on stimulating ACTH secretion [91]. AVP
interacts with a V1-type receptor (V1b, also referred 
as V3) and exerts its effects through calcium/phos-
pholipid-dependent mechanisms [8]. In nonstressful

situations, both CRH and AVP are secreted in the por-
tal system in a pulsatile fashion, with approximately
80% concordance of the pulses [7, 40]. It has been
shown that during stress, the amplitude of the pulsa-
tions increases, whereas, if the magnocellular AVP-se-
creting neurons are involved, continuous elevations 
of plasma AVP concentrations are seen.The aforemen-
tioned data support a reciprocal positive interaction
between hypothalamic CRH and AVP at the corti-
cotrophs.It is noteworthy that oxytocin,a nonapeptide
produced by parvicellular neurons of the PVN like AVP,
has no significant ACTH-releasing action in humans 
in vivo, while in the rat it appears to be an important
coregulator of ACTH secretion [92]. Finally, it should 
be mentioned that catecholamines stimulate CRH se-
cretion but have no direct effects on human pituitary
ACTH secretion, while ghrelin, a novel GH secreta-
gogue factor, appears to stimulate predominantly the
AVP secretion [6, 64].
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Fig. 2. A simplified, schematic representation of the intricate neuronal network that regulates the secretion of hypothalamic
corticotropin-releasing hormone (CRH) from parvicellular neurons of the paraventricular nucleus (PVN). The HPA axis is
tightly integrated with the main central nervous systems involved in the stress response.Activation is represented by solid lines
and inhibition by dashed lines (CRH, corticotropin-releasing hormone; ACTH, corticotropin; POMC, pro-opiomelanocortin;
LC/NE, locus ceruleus/norepinephrine-sympathetic system; AVP,arginine vasopressin; GABA,g-aminobutyric acid; BZD,ben-
zodiazepine)



3.2.2 Anterior Pituitary: Adrenocorticotropin

The signal of the initial HPA axis activation is trans-
ferred to the systemic circulation by adrenocorti-
cotropin (ACTH). ACTH is a 39-amino-acid peptide
secreted from the basophilic corticotrophic cells of the
anterior pituitary which are distributed in the median
wedge, anteriorly and laterally, and posteriorly adja-
cent to the pars nervosa.ACTH is a proteolytic product
of a 266-amino-acid precursor,pro-opiomelanocortin
(POMC) [38]. In the human anterior pituitary, POMC
is processed into ACTH and two large polypeptides,
N-terminal peptide and b-lipotropin, cosecreted in 
the circulation in approximately equimolar amounts
[65,79].Subsequently,normal or abnormal regulation
of ACTH secretion could be inferred by changes in the
secretion of co-secreted products. Small, variable
amounts of b-endorphin may also be produced and
secreted by the human pituitary,but further processing
of ACTH to smaller fragments, such as a-MSH and
corticotropin-like intermediate lobe peptide (CLIP),
does not occur in humans [65, 106]. It is of interest that
the POMC precursor peptide is secreted in detectable
amounts [115].

The regulatory influence of CRH on pituitary ACTH
secretion varies diurnally and changes during stress
[66]. The plasma ACTH concentration peaks at 6 a.m.
to 8 a.m., and the lowest concentrations are found at
about midnight. Episodic bursts of secretion appear
throughout the day [58, 128]. The central mechanisms
responsible for the circadian release of CRH/AVP/

ACTH in their characteristic pulsatile manner are not
completely defined,but appear to be controlled by one
or more central pacemakers [37].Plasma cortisol con-
centrations generally follow those of ACTH,but owing
to differences in bioavailability and pharmacokinetics
between the two hormones, the correlation between
their plasma concentrations is not perfect [54, 130].
The diurnal variation of ACTH and cortisol secretion
is disrupted when a stressor is imposed or by changes
in zeitgebers, e.g. lighting and activity.

The adrenal cortex is the principal target organ for
ACTH, which acts as the major regulator of cortisol
and adrenal androgen production by the zonae fascic-
ulata (central zone) and reticularis (inner zone),
respectively. ACTH is also essential for aldosterone
biosynthesis from the zona glomerulosa (outer zone),
although aldosterone secretion is primarily under the
control of the renin-angiotensin axis [4, 111]. The
biologic activity of ACTH resides in the N-terminal
portion, with the first 24 amino acids necessary for
maximal activity. ACTH interacts with specific high
affinity cell membrane receptors (melanocortin re-
ceptor 2, MC2), expressed in all three cortical zones
that couple to G-proteins to stimulate adenylyl cyclase
and generate cAMP [76]. The latter activates a cAMP-
dependent protein kinase, which stimulates choles-
terol ester hydrolase, the key enzyme in the adreno-
cortical response of steroidogenesis to ACTH [51]. In
addition, ACTH increases the uptake of cholesterol
from plasma lipoproteins, enhances later steps in the
steroidogenesis and has a trophic effect on the adrenal
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Fig. 3. The pathway of steroidogenesis in the three zones of the adrenal cortex



cortices (Fig. 3) [58]. It should be noted that ACTH
when hypersecreted stimulates the melanocytes via
the skin a-MSH receptor (MC1) [76], causing skin
hyperpigmentation.

3.2.3 Adrenal Cortex: Glucocorticoids

At the level of the adrenal cortex, glucocorticoids syn-
thesized in the zona fasciculata are the final effectors
of the HPA axis and direct the stress response toward
the goal of maintaining homeostasis. Cortisol, the
main endogenous glucocorticoid in humans, is secret-
ed by the adrenals into the circulation to reach the
peripheral target tissues, where it exerts its effects via
specific cytoplasmic receptors. In the unbound/inac-
tive state, the glucocorticoid receptors are found as
hetero-oligomers with heat shock protein (hsp) 90 
and other proteins,which include hsp 70 and immuno-
phillin [100, 107]. The ligand-bound receptors disso-
ciate from the hetero-oligomer, homodimerize, and
translocate into the nucleus, where they interact with
glucocorticoid responsive elements (GREs) of the
DNA to transactivate appropriate hormone-respon-
sive genes [85].The activated glucocorticoid receptors
also interact at the protein level with the c-jun compo-
nent of the activator protein-1 (AP-1) transcription
factor,preventing this factor from exerting its effect on
AP-1-responsive genes [57, 133].

Glucocorticoids play a key regulatory role on the
basal control of HPA axis activity and on the termina-
tion of the stress response by acting at suprahypotha-
lamic centers, the hypothalamus, and the pituitary
gland [31, 42, 63]. The presence of a direct glucocorti-
coid negative feedback is crucial for the attenuation of
the ACTH secretory response, in order to conserve the
capacity of the HPA axis to respond to subsequent
stressors. In addition, this negative feedback loop
limits the duration of the total tissue exposure to
glucocorticoids,thus minimizing the catabolic,antire-
productive, and immunosuppressive effects of these
hormones. Interestingly, a dual receptor system exists
for glucocorticoids in the central nervous system,
including the glucocorticoid receptor type I, or miner-
alocorticoid receptor, which responds to low levels of
glucocorticoids and is primarily activational, and the
classic glucocorticoid receptor (type II), which re-
sponds to higher levels of glucocorticoids and is damp-
ening in some systems and activational in others [31].

3.3 HPA Axis: Other System Interactions

3.3.1 HPA Axis: Immune System

Over the last few decades compiling evidence has re-
vealed a variety of interactions between the HPA axis
and the immune system, suggesting an alliance of
these systems against immune challenges. In states of
inflammatory or immune stress, the overall adaptive
mobilization of the organism can be described as a
combination of the immune system activation and the
typical stress response. Cytokines and other humoral
mediators of inflammation have been proven as potent
activators of the central stress response and can be re-
garded as the afferent limb of a feedback loop that
mediates the immune system and HPA axis crosstalk
(Fig. 4).

The three main inflammatory cytokines, tumor
necrosis factor-alpha (TNF-a), interleukin-1, and
interleukin-6, are secreted in inflammatory sites in 
a cascade-like fashion, with TNF-a appearing first
followed by IL-1 and IL-6 in tandem [5]. Although
TNF-a and IL-1a are primarily auto/paracrine regu-
lators of inflammation, both can be found in the gen-
eral circulation along with IL-1b and IL-6, the main
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Fig. 4. A simplified, schematic representation of the interac-
tions between the hypothalamic-pituitary-adrenal axis and
the immune system. Stimulatory effects are represented by
solid lines and inhibitory effects by dashed lines (CRH, corti-
cotropin-releasing hormone; ACTH,corticotropin; IL-1, inter-
leukin-1; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a)



endocrine inflammatory cytokines [88]. All three in-
flammatory cytokines are able to directly and indi-
rectly enhance the synthesis and secretion of CRH and
AVP at the level of the hypothalamus and their effects
are synergistic [13, 78, 102]. In addition, several
eicosanoids and other inflammatory mediators such
as platelet-activating factor (PAF), bradykinin, and
serotonin show strong CRH-releasing properties [12,
44, 26]. Most striking has been the ability of
interleukin-6 to acutely and chronically activate the
HPA axis in humans [117]. The acute ACTH response
to a single subcutaneous dose of IL-6 has been the
highest ever seen in response to any stimulus, while
antibodies to IL-6 almost completely block the stimu-
latory effect of bacterial lipopolysaccharide on the
HPA axis [75,14].IL-6 seems to be the critical cytokine
regulator in the immune stimulation of the HPA axis
in chronic inflammatory stress.It is not clear,however,
which of the above effects are endocrine and which are
paracrine. Presence of cytokinergic neural pathways
and local involvement of eicosanoids and PAF in CRH
secretion are certain. Direct effects, albeit delayed, of
most of these cytokines and mediators of inflamma-
tion on pituitary ACTH secretion also have been
shown [43], and direct effects of these substances on
adrenal glucocorticoid secretion also appear to be
present [99,131].Finally,indirect activation of the HPA
axis is also mediated through cytokine induced stim-
ulation of the central noradrenergic stress system.

Conversely,activation of the HPA axis has profound
inhibitory effects on the inflammatory immune re-
sponse, because virtually all the components of the
immune response are inhibited by cortisol (Fig. 4).
Glucocorticoids act as potent anti-inflammatory and
immunosuppressive factors by influencing the traffic
of circulating leukocytes and inhibiting vital functions
of the immune cells. Furthermore, they decrease 
the production of cytokines and other mediators of
inflammation (e.g. platelet-activating factor, nitric
oxide, prostanoids), induce cytokine resistance and
inhibit the expression of adhesion molecules and their
receptors on the surface of immune cells [77, 26]. It is
interesting that glucocorticoids and catecholamines
secreted during stress exert an immunomodulative
effect by suppressing the T-helper 1 (Th1) response
and causing a Th2 shift, thus protecting the tissues
from the potentially destructive actions of type 1 pro-
inflammatory cytokines and other products of acti-
vated macrophages [39].

An interesting aspect of the immune response is
that CRH is also secreted peripherally at inflammatory
sites (peripheral or immune CRH) by postganglionic

sympathetic neurons and by cells of the immune sys-
tem (e.g.macrophages, tissue fibroblasts) [61].The se-
cretion of immune CRH has been examined both in
experimental animal models of inflammation [61] and
in patients with rheumatoid arthritis [29] and
Hashimoto’s thyroiditis [112].Immune CRH secretion
is suppressed by glucocorticoids and somatostatin
[61].Mast cells are considered as the primary target of
immune CRH where,along with substance P, it acts via
CRH type 1 receptors causing degranulation. Subse-
quently, histamine is released, causing vasodilation,
increased vascular permeability and other manifesta-
tions of local inflammation.Thus,locally secreted CRH
has proinflammatory properties,whereas central CRH
alleviates the immune response [26, 39].

3.3.2 HPA Axis: Other Endocrine Axes

The HPA axis is closely linked to the endocrine axes
that control reproduction and growth. The survival 
of the individual and the species in general requires
adequate nourishment, growth and reproduction,
which are achieved through biologically costly path-
ways that threaten the stability of the internal milieu.
Under conditions of serious danger to survival, the
stress-dependent HPA axis activation intervenes to ex-
ert multilevel inhibitory effects on the gonadal and
growth axes, until the imposed challenge is counter-
acted.

3.3.2.1 Gonadal Axis

The reproductive axis is inhibited at all levels by
various components of the HPA axis (Fig. 5) [72, 86,
95]. At the hypothalamic level, CRH suppresses the
gonadotropin hormone releasing hormone (GnRH)
neurons of the arcuate nucleus. CRH-induced b-en-
dorphin secretion by the arcuate POMC neurons
mediates this suppression,but direct inhibitory action
of CRH is also suggested [25]. In addition, gluco-
corticoids exert inhibitory effects on the hypothalam-
ic GnRH neuron, the pituitary gonadotroph, and the
gonads themselves and render target tissues of sex
steroids resistant to their actions [86]. Hypothalamic
functional amenorrhea is a typical example of stress
induced inhibition of the female reproductive axis,
while suppression of the gonadal function by chronic
HPA axis activation has been also demonstrated in
highly trained athletes of both sexes and in individu-
als with anorexia nervosa or sustaining starvation [52,
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68, 62]. It is interesting that during inflammation,
circulating cytokines suppress the reproductive func-
tions by activating the hypothalamic secretion of CRH
and POMC-derived peptides,by enhancing the adreno-
cortical secretion of glucocorticoids and by inhibiting
steroidogenesis at both ovaries and testes [93, 119].

Finally, a reciprocal interaction between CRH and
the sex hormones is suggested by the presence of
estrogen responsive elements in the promoter area of
the CRH gene and by the direct stimulatory effects that
estrogen exerts on CRH gene expression [126]. This
finding implicates the CRH gene and consequently the
HPA axis as a potentially important target of ovarian
steroids and a potential mediator of gender related dif-
ferences in the stress response and HPA axis activity.

3.3.2.2 Growth Axis

Growth is also sacrificed in order to preserve homeo-
stasis under stressful conditions through a variety of
inhibitory effects mediated by the HPA axis (Fig. 5)

[34,96].Prolonged activation of the HPA axis results in
increased circulating levels of glucocorticoids which
suppress the secretion of growth hormone (GH) and
inhibit the action of somatomedin C and other growth
factors on their target tissues [15, 122, 57]. However,
it should be noted that at the onset of the stress re-
sponse or after acute administration of glucocorti-
coids an acute elevation of growth hormone concen-
tration in plasma may occur, presumably as a result 
of GH gene stimulation by glucocorticoids through
glucocorticoid-responsive elements in its promoter
region [19]. At the level of the hypothalamus, CRH
stimulates the secretion of somatostatin, which is the
most potent inhibitor of the growth hormone secre-
tion by the somatotroph cells of the anterior pituitary,
providing a centrally acting mechanism of growth
suppression by the HPA axis.

The anabolic function of the thyroid gland is also
interrupted by the activated HPA axis in order to
conserve energy during stress. Increased circulating
levels of glucocorticoids suppress the pituitary pro-
duction of thyroid-stimulating hormone (TSH) and
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Fig. 5. A schematic representation of the regulatory effects of the hypothalamic-pituitary adrenal (HPA) axis on the repro-
ductive axis, the growth axis and the metabolism. Dysfunction of the HPA axis may lead to osteoporosis and manifestations
of the metabolic syndrome. Stimulatory effects are represented by solid lines and inhibitory effects by dashed lines (CRH, cor-
ticotropin-releasing hormone; ACTH, corticotropin; GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone;
FSH, follicle-stimulating hormone; STS, somatostatin; GHRH, growth hormone-releasing hormone; GH, growth hormone;
SmC, somatomedin C)



inhibit the conversion of the relatively inactive thy-
roxine to the more biologically active triiodothyronine
in peripheral tissues (the “euthyroid sick” syndrome)
[11, 36]. Inhibition of TRH and TSH secretion by 
CRH-stimulated increases in somatostatin might also
participate in the central component of thyroid axis
suppression during stress. Especially in the case of
inflammatory stress, inhibition of TSH secretion is
attributed in part to the direct action of cytokines on
the hypothalamus and the pituitary [112, 117].

3.3.2.3 Metabolism

Glucocorticoids, the hormonal end-product of the
HPA axis, exert primarily catabolic effects as part of
a generalized effort to utilize every available energy
resource against the challenge posed by intrinsic or
extrinsic stressors. Thus, glucocorticoids increase
hepatic gluconeogenesis and plasma glucose concen-
tration, induce lipolysis (although they favor abdomi-
nal and dorsocervical fat accumulation) and cause
protein degradation at multiple tissues (e.g. muscle,
bone, skin) to provide amino acids that would be used
as an additional substrate at oxidative pathways.In ad-
dition to their direct catabolic actions,glucocorticoids
also antagonize the beneficial anabolic actions of GH,
insulin and sex steroids on their target tissues [27].
This shift of the metabolism toward a catabolic state
under the control of the activated HPA axis normally
reverses upon retraction of the enforced stressor.
Indeed, chronic activation of HPA axis would be dam-
aging as it is expected to increase visceral adiposity,
decrease lean body (muscle and bone) mass, suppress
osteoblastic activity and cause insulin resistance
(Fig. 5). Interestingly, the phenotype of Cushing’s syn-
drome, characterized by abdominal and trunk fat
accumulation and decreased lean body mass, in
combination with manifestations of the metabolic
syndrome (visceral adiposity, insulin resistance, dys-
lipidemia, hypertension), is present in a variety of
pathophysiologic conditions, collectively described as
pseudo-Cushing’s states. The pseudo-Cushing’s states
are presumably attributed to HPA-induced mild hy-
percortisolism or to adipose tissue-specific hypersen-
sitivity to glucocorticoids [27, 118].

The balance of metabolic homeostasis is also cen-
trally affected by the neuroendocrine integration of
the HPA axis to the CNS centers that control energy
expenditure and intake. Indeed, CRH stimulates the
POMC neurons of the arcuate nucleus which, via 
a-MSH release, elicit antiorexigenic signals and in-

crease thermogenesis [89].Conversely,glucocorticoids
at the hypothalamic level enhance the intake of carbo-
hydrates and fat and inhibit energy expenditure by
stimulating the secretion of neuropeptide Y, which is
the most potent appetite stimulator [20].

3.4 HPA Axis: Pathophysiology

Generally, the activation of the HPA axis is tightly
regulated and is intended to be acute or at least of
a limited duration. The time-limited nature of this
process renders the induced adaptive antireproduc-
tive, antigrowth, catabolic and immunosuppressive
effects temporarily beneficial rather than damaging
and prevents significant adverse consequences [114].
In contrast,prolongation of the HPA axis activation,as
documented in chronic stressful conditions, would
lead to the stress syndromal state that Selye described
in 1936 characterized by anorexia, loss of weight,
depression, hypogonadism, peptic ulcers, immuno-
suppression, adrenal enlargement and involution of
the thymus and lymph nodes [104]. Because CRH
coordinates behavioral, neuroendocrine and auto-
nomic adaptation during stressful situations, in-
creased and prolonged production of CRH could ex-
plain the pathogenesis of the syndrome [120].

The prototypic example of prolonged dysregulation
leading to hyperactivation of the HPA axis is mani-
fested in melancholic depression with dysphoric
hyperarousal and relative immunosuppression [46].
Indeed, cortisol excretion is increased and plasma
ACTH response to exogenous CRH decreased. Hyper-
secretion of CRH has been shown in depression and
suggests that CRH may participate in the initiation or
perpetuation of a vicious cycle. Thus, owing to chron-
ically hyperactive CRH neurons, patients with melan-
cholic depression may sustain several severe somatic
sequelae,such as osteoporosis,features of the metabol-
ic syndrome,varying degrees of atherosclerosis,innate
and Th-1-directed immunosuppression and certain
infectious and neoplastic diseases [26]. If untreated,
these patients have a compromised life expectancy
curtailed by 15–20 years after excluding suicides.

In addition to melancholic depression, a spectrum
of other conditions may be associated with increased
and prolonged activation of the HPA axis (Table 1) in-
cluding anorexia nervosa [47], obsessive-compulsive
disorder [56], panic anxiety [24], excessive exercising
[70], malnutrition [73], chronic active alcoholism
[129], alcohol and narcotic withdrawal [10, 90], dia-
betes mellitus [120], hyperthyroidism [59] and pre-
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menstrual tension syndrome [87]. Notably, patients
with central (upper body) obesity exhibit higher levels
of circulating inflammatory cytokines [116] while a
subpopulation of these patients were also found to
have mild hypercortisolism [81, 27].

Pregnancy is another condition characterized by
hypercortisolism of a degree similar to that observed
in mild Cushing’s syndrome, severe depression and
anorexia nervosa. Gestation is the only known physi-
ologic state in humans in which CRH circulates in
plasma at levels high enough to cause activation of the
HPA axis [103]. Although circulating CRH, which is 
of placental origin, is bound with high affinity to 
CRH-binding protein [69, 83], it appears that the cir-
culating free fraction is sufficient to explain the ob-
served hypercortisolism. Hypercortisolism of preg-
nancy is associated with suppression of hypothalamic
secretion of CRH, persisting in the postpartum [49].

On the other side of the spectrum of HPA axis dys-
regulation, another group of states is characterized 
by hypoactivation, rather than sustained activation,

in which chronically reduced secretion of CRH may
result in pathologic hypoarousal (Table 1). Patients
with seasonal depression and the chronic fatigue
syndrome fall into this category [32, 127]. Similarly,
patients with fibromyalgia have decreased urinary free
cortisol excretion and frequently complain of fatigue
[50]. Hypothyroid patients also have clear evidence of
CRH hyposecretion and often present depression of
the “atypical” type [60]. It is interesting that in Cush-
ing’s syndrome, the clinical manifestations of hyper-
phagia,weight gain,fatigue,and anergia are consistent
with the suppression of the hypothalamic CRH neu-
rons by the associated hypercortisolism [48].

It is believed that an excessive HPA axis response 
to inflammatory stimuli would mimic the stress or
hypercortisolemic state and would lead to increased
susceptibility of the individual to a host of infectious
agents or tumors as a result of Th-1 suppression, but
enhanced resistance to autoimmune/inflammatory
disease [39]. In contrast,a defective HPA axis response
to such stimuli would reproduce the glucocorticoid-
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Table 1. Pathophysiology of the hypothalamic-pituitary-adrenal axis (HPA) axis

HPA axis activity

Increased Decreased Disrupted

Severe chronic disease +
Melancholic depression +
Anorexia nervosa +
Obsessive-compulsive disorder +
Panic disorder +
Chronic excessive exercise +
Malnutrition +
Diabetes mellitus +
Chronic alcoholism +
Hyperthyroidism +
Central obesity +
Pregnancy +
Atypical depression +
Seasonal depression +
Chronic fatigue syndrome +
Fibromyalgia +
Hypothyroidism +
Post glucocorticoid therapy +
Post stress +
Postpartum +
Rheumatoid arthritis +
Cushing’s syndrome +
Glucocorticoid deficiency +
Glucocorticoid resistance +
Congenital adrenal hyperplasia +
ACTH resistance +



deficient state and would lead to relative resistance 
to infections and neoplastic disease,but increased sus-
ceptibility to autoimmune/inflammatory disease,such
as Hashimoto’s thyroiditis or rheumatoid arthritis
[26]. Thus, an increasing body of evidence suggests
that patients with rheumatoid arthritis have a mild
form of central hypocortisolism [22]. Dysfunction of
the HPA axis may actually play a role in the develop-
ment or perpetuation of autoimmune disease, rather
than being an epiphenomenon [109]. The same ra-
tionale may explain the high incidence of autoimmune
disease in the period after cure of hypercortisolism,as
well as in glucocorticoid underreplaced adrenal insuf-
ficiency [74].

Disruption of the HPA axis may present as a result
of destructive processes involving the hypothalamus,
pituitary, or adrenal glands, leading eventually to
adrenal insufficiency (Table 1). On the other hand,
eutopic or ectopic autonomous production of CRH,
ACTH, or cortisol results in the development of
Cushing’s syndrome and suppression of the hypothal-
amic CRH neuron and normal pituitary corticotroph.
It is interesting that the HPA axis of patients cured
from Cushing’s syndrome or after discontinuation of
chronic glucocorticoid therapy requires a period of
6 months to 2 years to normalize [35]. It appears that
the locus of such chronic glucocorticoid-induced
adrenal suppression is primarily suprapituitary in-
volving the CRH neuron [49].

Finally, genetic defects can cause disruption of the
HPA axis. These include the various types of congeni-
tal adrenal hyperplasia due to enzymatic defects at
different steps of steroidogenesis and the rare syn-
dromes of ACTH and glucocorticoid resistance,
whereby the defect lies in the ACTH and glucocorti-
coid receptor gene, respectively [55, 113]. All these
hereditary abnormalities lead to attenuation or com-
plete loss of the glucocorticoid negative feedback,
resulting in compensatory increases of CRH and
ACTH secretion [23].
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