- Relationship between

$E\left(L_{S}\right), E\left(L_{q}\right), E\left(W_{S}\right), E\left(W_{q}\right)$
i) $E\left(L_{s}\right)=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}$ and $E\left(W_{S}\right)=\frac{1}{\mu(1-\rho)}=\frac{1}{\mu-\lambda}$ therefore

$$
E\left(L_{S}\right)=\lambda E\left(W_{S}\right)
$$

ii) $E\left(L_{q}\right)=\frac{\rho^{2}}{1-\rho}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}$ and $E\left(W_{q}\right)=\frac{\rho}{\mu(1-\rho)}=\frac{\lambda}{\mu(\mu-\lambda)}$, Therefore, $E\left(L_{q}\right)=\lambda E\left(W_{q}\right)$
$E\left(W_{S}\right)=\frac{1}{\mu(1-\rho)}=\frac{1}{\mu-\lambda}$ and $E\left(W_{q}\right)=\frac{\rho}{\mu(1-\rho)}=\frac{\lambda}{\mu(\mu-\lambda)}$, Therefore

$$
E\left(W_{s}\right)=E\left(W_{q}\right)+\frac{1}{\mu}
$$

Model -2 (General Erlang Queuing model)

This model is similar to model 1 but difference is only that mean arrival rate and service rate are depend on n not constant.

- $\lambda_{n}=$ mean effective arrival rate (number of customers arriving per unit time).
- $\mu_{n}=$ mean service rate per busy server (number of customers served per unit tine)
- Step 1: to find the system of steady state equations.

Proceeding similarity as in Model 1, the Probability of n units in the system at time $(t+\Delta t)$ is given by
${ }^{(i)}$ (n-1) units in the system at time t with probability $P_{n-1}(t)$
Probability of one arrival in time Δt i.e. $P_{1}(\Delta t)=\lambda_{n-1} \Delta t$
Probability of no service in time Δt i.e. $\varphi_{\Delta t}(0)=1-\mu_{n-1} \Delta t$
The probability in this case is $P_{n-1}(t) \lambda_{n-1} \cdot \Delta t \cdot\left(1-\mu_{n-1} \cdot \Delta t\right)$
(ii) n units in the system at time t with probability $P_{n}(t)$

Probability of no arrival in time Δt i.e. $P_{0}(\Delta t)=1-\lambda_{n} \Delta t$
Probability of no service in time Δt i.e. $\varphi_{\Delta t}(0)=1-\mu_{n} \Delta t$
The probability in this case is $P_{n}(t)\left(1-\lambda_{n} \cdot \Delta t\right) \cdot\left(1-\mu_{n} \cdot \Delta t\right)$
(iii) $(\mathrm{n}+1)$ units in the system at time t with probability $P_{n+1}(t)$

Probability of no arrival in time Δt i.e. $P_{0}(\Delta t)=1-\lambda_{n+1} \Delta t$
Probability of one service in time Δt i.e. $\varphi_{\Delta t}(0)=\mu_{n+1} \Delta t$
The probability in this case is $P_{n+1}(t)\left(1-\lambda_{n+1} \cdot \Delta t\right) \cdot \mu_{n+1} \cdot \Delta t$
Since all the above three cases are mutually exclusive, therefore $P_{n}(t+\Delta t)$, the probability of n units in the system at time $(t+\Delta t)$ is obtained by adding the probabilities in the above three cases.
$P_{n}(t+\Delta t)=P_{n-1}(t) \lambda_{n-1} \cdot \Delta t \cdot\left(1-\mu_{n-1} \cdot \Delta t\right)_{+} P_{n}(t)\left(1-\lambda_{n} \cdot \Delta t\right) \cdot\left(1-\mu_{n} \cdot \Delta t\right)_{+} P_{n+1}(t)\left(1-\lambda_{n+1} \cdot \Delta t\right) \cdot \mu_{n+1} \cdot \Delta t$
$\frac{P_{n}(t+\Delta t)-P_{n}(t)}{\Delta t}=\lambda_{n-1} P_{n-1}(t)-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\mu_{n+1} P_{n+1}(t)+\frac{\text { higher order of } \Delta t}{\Delta t}$

Similarly there is no units in the system at time $(t+\Delta t)$ in the following two ways.
(i) No units in the system at time t with probability $P_{0}(t)$

Probability of no arrival in time Δt i.e. $P_{0}(\Delta t)=1-\lambda_{0} \Delta t$
The probability in this case is $P_{0}(t)\left(1-\lambda_{0} . \Delta t\right)$
(ii) one units in the system at time t with probability ${ }_{1}(t)$

Probability of no arrival in time Δt i.e. $P_{0}(\Delta t)=1-\lambda_{1} \Delta t$

Probability of one service in time Δt i.e. $\varphi_{\Delta t}(0)=\mu_{1} \Delta t$
The probability in this case is $P_{1}(t)\left(1-\lambda_{1} \cdot \Delta t\right) \cdot \mu_{1} \cdot \Delta t$
Adding the probabilities in the above two cases.
$P_{0}(t+\Delta t)=P_{0}(t)\left(1-\lambda_{0} \cdot \Delta t\right)+P_{1}(t)\left(1-\lambda_{1} \cdot \Delta t\right) \cdot \mu_{1} \cdot \Delta t$
$\frac{P_{0}(t+\Delta t)-P_{0}(t)}{\Delta t}=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t)+\frac{\text { higher order of } \Delta t}{\Delta t}$

Taking limit $\Delta t \rightarrow 0$, from (1) \& (2)
$P_{n}^{\prime}(t)=\lambda_{n-1} P_{n-1}(t)-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\mu_{n+1} P_{n+1}(t)$
$P_{0}^{\prime}(t)=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t)$

When the system reaches steady state i.e.
$\lim _{t \rightarrow \infty} P_{n}(t)=P_{n}$ and $\lim _{t \rightarrow \infty} P_{n}^{\prime}(t)=0$
Therefore $\lambda_{n-1} P_{n-1}(t)-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\mu_{n+1} P_{n+1}(t)=0$
$-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t)=0$

These equations (5) and (6) are the steady state equations of the system.
To solve the steady state equations (5) and (6) obtained in step 1.

From (6)

$$
P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0}
$$

$\underset{\text { From(5) }}{ } P_{n+1}(t)=-\frac{\lambda_{n-1}}{\mu_{n+1}} P_{n-1}(t)+\frac{\left(\lambda_{n}+\mu_{n}\right)}{\mu_{n+1}} P_{n}(t)=-\frac{\lambda_{n-1}}{\mu_{n+1}} P_{n-1}(t)+\left(\frac{\lambda_{n}}{\mu_{n+1}}+\frac{\mu_{n}}{\mu_{n+1}}\right) P_{n}(t)$
put $\mathrm{n}=1$

$$
P_{2}(t)=-\frac{\lambda_{0}}{\mu_{2}} P_{0}(t)+\frac{\left(\lambda_{1}+\mu_{1}\right)}{\mu_{2}} P_{1}(t)=-\frac{\lambda_{0}}{\mu_{2}} P_{0}(t)+\left(\frac{\lambda_{1}}{\mu_{2}}+\frac{\mu_{1}}{\mu_{2}}\right) P_{1}(t)
$$

$P_{2}(t)=-\frac{\lambda_{0}}{\mu_{2}} \frac{\mu_{1}}{\lambda_{0}} P_{1}+\frac{\left(\lambda_{1}+\mu_{1}\right)}{\mu_{2}} P_{1}(t)=-\frac{\mu_{1}}{\mu_{2}} P_{1}(t)+\left(\frac{\lambda_{1}}{\mu_{2}}+\frac{\mu_{1}}{\mu_{2}}\right) P_{1}(t)=\frac{\lambda_{1}}{\mu_{2}} P_{1}(t)=\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} P_{0}$
Similarly, $P_{3}(t)=\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} \frac{\lambda_{2}}{\mu_{3}} P_{0}$
Proceeding in this way, we have
$P_{n}(t)=\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} \frac{\lambda_{2}}{\mu_{3}} \cdots \ldots \ldots \ldots \frac{\lambda_{n-1}}{\mu_{n}} P_{0}$

We know that $\sum_{n=1}^{\infty} P_{N}=1 \Rightarrow P_{0}+P_{1}+P_{2}+P_{3} \ldots \ldots \ldots \ldots . .$.
$1+\frac{\lambda_{0}}{\mu_{1}} P_{0}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} P_{0}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} \frac{\lambda_{2}}{\mu_{3}} P_{0} \ldots \ldots \ldots \ldots \ldots \ldots=1$
$P_{0}=\frac{1}{S}$
$S=1+\frac{\lambda_{0}}{\mu_{1}} P_{0}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} P_{0}+\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} \frac{\lambda_{2}}{\mu_{3}} P_{0}$.
If S is divergent then $P_{0}=0$, which is meaningless.
Therefore, we assume that S is convergent series.

Particular cases:

Case 1: $\left.\begin{array}{rl}\lambda_{n}=\lambda \\ \mu_{n} & =\mu\end{array}\right\}$ (both independent of n)
$S=1+\frac{\lambda}{\mu} P_{0}+\left(\frac{\lambda}{\mu}\right)^{2} P_{0}+\left(\frac{\lambda}{\mu}\right)^{3} P_{0} \ldots \ldots \ldots \ldots \ldots$.
$=\frac{1}{1-\frac{\lambda}{\mu}}=\frac{1}{1-\rho}$
$P_{0}=1-\rho$
$P_{n}=\rho^{n}(1-\rho)$

These correspond to the result of Model 1.

$$
\left.\lambda_{n}=\frac{\lambda}{n+1}\right\}
$$

Case 2: $\mu_{n}=\mu$
In this case ${ }^{\lambda_{n}}$ decreases as n increases, i.e. arrival rate decreases with the increase in queue length and rate of service is independent of n.

This is called the case of "Queue with discouragement".
Substituting the values of λ_{n} and μ_{n} in (9)
$S=1+\frac{\lambda}{\mu} P_{0}+\frac{\lambda^{2}}{1.2 \mu^{2}} P_{0}+\frac{\lambda^{3}}{2.3 \mu^{3}} P_{0} \ldots \ldots \ldots \ldots \ldots$.
$=1+\rho+\frac{\rho^{2}}{2!}+\frac{\rho^{3}}{3!} \ldots \ldots=e^{\rho}$

From (8)
$P_{0}=\frac{1}{S}=e^{-\rho}$
$P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0}=\rho e^{-\rho}$
$P_{2}(t)=\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} P_{0}=\frac{\rho^{2}}{2!} e^{-\rho}$
$P_{2}(t)=\frac{\rho^{n}}{n!} e^{-\rho}$

Which implies that $P_{n}(t)$ follows the poisson distribution.

Case 3: If $\lambda_{n}=n$ and $\mu_{n}=n \mu$, This is known as a problem of "queue with infinite number of channels"

Substituting the values of λ_{n} and μ_{n} in (9)
$S=1+\frac{\lambda}{\mu} P_{0}+\frac{\lambda^{2}}{1.2 \mu^{2}} P_{0}+\frac{\lambda^{3}}{2.3 \mu^{3}} P_{0}$.
$=1+\rho+\frac{\rho^{2}}{2!}+\frac{\rho^{3}}{3!} \ldots \ldots=e^{\rho}$
$P_{0}=\frac{1}{S}=e^{-\rho}$
$P_{1}=\frac{\lambda_{0}}{\mu_{1}} P_{0}=\rho e^{-\rho}$
$P_{2}(t)=\frac{\lambda_{0}}{\mu_{1}} \frac{\lambda_{1}}{\mu_{2}} P_{0}=\frac{\rho^{2}}{2!} e^{-\rho}$
$P_{n}(t)=\frac{\rho^{n}}{n!} e^{-\rho}$

Which implies that $P_{n}(t)$ follows the poisson distribution in this case also.
(a) To find Expected (or average) number of customer in the system (customers in the line plus the customer being served)
$E\left(L_{S}\right)=\sum_{n=0}^{\infty} n P_{n}=\sum_{n=0}^{\infty} n \frac{\rho^{n}}{n!} e^{-\rho}=\rho \sum_{n=0}^{\infty} \frac{\rho^{n-1}}{(n-1)!} e^{-\rho}=\rho e^{-\rho} e^{\rho}=\rho$
$E\left(L_{S}\right)=\rho=\frac{\lambda}{\mu}$
Now with the help of relations (A), (B), and (C), $E\left(L_{q}\right) E\left(W_{q}\right)$ and $E\left(W_{S}\right)$ may be obltained.

