¹³C NMR

The ¹³C NMR is generated in the same fundamental was as proton NMR spectrum. Only 1.1 % of naturally occurring carbon is ¹³C and actually an advantage because of less coupling.

Requirement for NMR: Spin quantum $\#(I) \neq 0$ Meaning \rightarrow must be an odd number and/or neutrons. Ex. ¹H, ²H, ¹³C, ¹⁹F, etc...("*Thinkbook*") How do we find this? Look at the atomic number.

The ¹³C NMR is **directly** about the carbon skeleton not just the proton attached to it.

- a. The number of signals tell us how many different carbons or set of equivalent carbons
- b. The **splitting of a signal** tells us how many hydrogens are attached to each carbon. (N+1 rule)
- c. The **chemical shift** tells us the hybridization (sp^3, sp^2, sp) of each carbon.
- d. Integration: Not useful for ¹³C NMR

Proton –coupled spectrum shows splitting of the carbon signal only by protons attached to that carbon itself.

¹³C_H coupling not ${}^{13}C_{-}{}^{13}C_{-}H$ or not ${}^{13}C_{-}{}^{13}C_{-}H$ or not ${}^{12}C_{-}{}^{13}C$ coupling occurs but very low

due to low abundance 1.1 %x1.11%

("Thinkbook")

No coupling ¹²C I=0 ("Thinkbook")

Thus, for each carbon the multiplicity of the signal depends upon how many protons are attached to it.

Note: Due to low natural abundance,¹³C NMR spectra do not ordinarily show carbon-carbon splitting two ¹³C being next to other is 1.1 %x 1.1%=0.012 % (because ¹²C does not have a magnetic moment, it cannot split the signal of an adjacent ¹³C), and are thus enormously simplified. ("Thinkbook")

Proton-Decoupled Spectrum shows no splitting at all; it consists of a set of single peaks, one for each carbon or each set of equivalent carbons in a molecule. Even for very complicated molecules, such a spectrum is amazingly simple (because overlapping multiplets very difficult to interpret)-most commonly run spectrum for structural analysis; and will list the multiplicity of the peaks in the upper left-hand corner. (Bruice)

Chemical Shift in ¹³C NMR spectrum arises in the same way as in the proton NMR spectrum. Each carbon nucleus has its own electronic environment, different from the environment of other, non-equivalent nuclei; it feels a different magnetic field, and absorbs at different applied fields strength.

- Electronegative atoms and pi bonds cause downfield shifts ("Thinkbook")
- ✤ ¹³C chemical shift range 0-250 ppm ("Thinkbook")

In ¹³C NMR spectrum, the more electronegative group bonded to carbon atom \rightarrow deshielding increases. This table demonstrates this effect.

	Ι	Br	Cl	F
Electronegativity	2.5	2.8	3.0	4.0
(Pauling Scale)				
Sp ³ hydrid	<mark>C</mark> H₃I	<mark>C</mark> H₃Br	<mark>C</mark> H₃Cl	<mark>C</mark> H₃F
carbon				
Chemical shift	9.6	25.6	49.9	71.6
(ppm)				

How many signals are in the ¹³C NMR spectrum?

0

to -CH₂ downfield (60.6 ppm) is attached to O cause deshielded

Benzyl CH₂ (41.1 ppm). Aromatic ring carbons have resonance over range from 126 ppm to 135 ppm.

Determine the structure from this formula $C_4H_8O_2$ in 13 spectrum \rightarrow 179.9 ppm (triplet) 51.5 ppm (quartet), 27.5 ppm (triplet) and 9.2 ppm (quartet) ('Thinkbook PP#12") 179.9 ppm corresponding to ester or ketone carbonyl group; 51.5 ppm is downfield must be close to carbonyl or oxygen (OCH3); 27.5 ppm (CH2) and 9.2 ppm (quartet) --CH3 group further away from carbonyl group in upfield region.

These are three structures possibilities:

0

$$CH_{3} - C - OCH_{2} - CH_{3}$$

$$CH_{3} - CH_{2}C - O - CH_{3}$$

$$CH_{3} - C - CH_{2} - O - CH_{3}$$

$$A = b = c = d$$

$$A = b = c = d$$

$$CH_{3} - C - CH_{2} - O - CH_{3}$$

$$A = b = c = d$$

$$A = b$$

0

Actual structure = Methyl Propionate (¹³C spectrum above)

 $\begin{array}{c} {\color{black} \textbf{C}} H_3 _ {\color{black} \textbf{C}} H_2 _ {\color{black} \textbf{C}} H_2 _ {\color{black} \textbf{C}} H_2 _ {\color{black} \textbf{C}} H_2 _ {\color{black} \textbf{C}} H_3 & (\text{note: there are six carbons but } ^{13} \textbf{C} \\ a & a & b & b & c & c & \text{NMR showed only 3 signals} \\ a. 14.16 ppm & b. 31.87 ppm & c. 22.89 ppm & due to molecular symmetry) \end{array}$

Cyclohexane has one signal because all carbons on the ring are equivalent carbons

Note: Enantiomers and resonance contributors have identical spectra but diastereomers spectra are NOT identical.

ppm	Hybridzation	Kinds of compounds
0-70	Sp ³	Alkane (CH3)
70-100	Sp ³ and sp	C-O and C-N
100-160	Sp ²	Aromatic C and C=C
160-210	Sp ²	Aldehydes and ketone
		carbonyl (C=0)

Typical 13C NMR Chemical Shift ranges

Splitting Pattern (N+1 rule): for each carbon the multiplicity of the signal depends upon how many protons are attached to it.

Ex.

Η

Ċ

Н С

		_		
Η	С	Н	Н	СН

_	_	_	_
no proton	one proton	two protons	three protons
singlet	doublet	triplet	quartet

2D- NMR: Interaction of nuclear spins plotted in two dimensions. Correlation Spectroscopy (COSY)

- ◆ Two axes correspond to the single isotope *"Thinkbook"*)
- ✤ The interaction indicates with H's are coupled→ gives better understanding of structure. ("Thinkbook")

Heteronuclear Multiple-Quantum Coherence (HMQC)

- * 2 axes correspond to 2 different isotopes (usually 13 C and 1 H)
- Interaction indicates H's coupling to nuclei other than H

Magnetic Resonance Imaging (MRI)

- ✤ ^TH NMR spectroscopy has been applied to diagnostic medicine.
- The relaxation times of hydrogen atoms in different environments (ex. brain vs. bone)
- The rate of relaxation is related to the extent of binding of water to the surface of biological molecules.

Note: These ¹³C spectra obtained from National Institute of Advanced Science and Technology (AIST) website:http://www.aist.go.jp/