
DO loops
in Fortran 90 Programming Language

Course Coordinator: Dr. Anil Kumar Yadav
Course: Fortran 90 Programming Language

Note: Contents of this documents are to be used only for teaching purpose

Text book

 Computer Programming in Fortran 90
and 95 by V. Rajaraman

Outline

 Need of loops
 What is loops?
 Forms of Do loops
 Examples

program 1: Finding the sum of digits of a number

Example

Using MOD function and defining
n as integer.

Finding digit and number repeated
5 times

!THE MOD FUNCTION RETURNS
LEAST SIGNIFICANT
!DIGITOF n
digit1 =MOD(n,1 0)
n=n/10
digit2=MOD(n,10)
n=n/10
digit3=MOD(n,10)
n=n/10
digit4=MOD(n,10)
n=n/10
digit5=n
sum=digit1+digi2+digit3+digit4+digit5
PRINT *,"sum of digits = ",sum
END PROGRAM

LOOP

 Loops are computer program which are used
for repeated execution of similar things.

 As in previous program digit extraction and
division of number was repeated 4 times for 5
digit number.

DO LOOP

 Do Command

Observe that there is no way to leaving the loop.
Statements is stoppable forcefully only by
switching of the computer.
No exist condition to leave the loop.

DO
IF(n==0)exit
Block of statements
END DO

Exit Condition from loop

DO
Block of statements
END DO

Summing digits by DO loop

EXAMBPLE: summing of digit using do loop
!PROGRAM FOR SUMMING DIGITS
!USE OF DO LOOP
PROGRAM sum_digit
IMPLICIT NONE
INTEGER::n,number,digit,sum=0
PRINT*,"type number"
READ*,number
n=number
DO
 IF(n==0)EXIT
 digit=MOD(n,10)
 sum=sum+digit
 n=n/10
END DO
PRINT*,"number=",number,"sum of
digit=",sum
END

Example: Reverse order of a number

EXAMBPLE: PROGRAM FOR REVERSE ORDER OF A GIVEN NUMBER
!PROGRAM FOR REVERSE THE ORDER OF A GIVEN NUMBER
PROGRAM rev_order
IMPLICIT NONE
INTEGER::number,n,digit,sum1=0
PRINT*,"type the number"
READ*,number
n=number
DO
 IF(n==0)EXIT
 digit=MOD(n,10)
 n=n/10
 sum1=sum1*10+digit
END DO
PRINT*,"given number=",number,"number in reverse order",sum1
END PROGRAM

General form of DO Loop

The DO command orders that the block of statements enclosed by DO and END
DO is to be executed again and again as long as the logical expression is false. When
the logical expression becomes true the program jumps to the statement next to END
DO. In this case the DO loop will be executed as long as the logical expression is
false. The programmer should ensure that the logical expression will become true so
that control leaves the loop.

DO
 block of statements-1
IF (logical expression) EXIT
 block of statements-2
END DO

EXAMPLE EXAMBPLE: Average height of boys and girls of the class
!PROGRAM TO FIND AVERAGE HEIGHT OF BOYS AND GIRLS IN THE CLASS
PROGRAM avg_height
IMPLICIT NONE
INTEGER::roll_no,total_boys=0,total_girls=0,sex_code !sex code '1'for boys and '0'for girls
REAL::height,avg_boys,avg_girls,sum1=0.0,sum2=0.0
DO
 PRINT*,"type the value of roll_no,sex_code,height"
 READ*,roll_no,sex_code,height
 IF(roll_no==0)EXIT
 IF(sex_code==1)then
 sum1=sum1+height
 total_boys=total_boys+1
 ELSE IF(sex_code==0)then
 sum2=sum2+height
 total_girls=total_girls+1
 ELSE
 PRINT*,"error in sex code"
 END IF
END DO
 avg_boys=sum1/total_boys
 avg_girls=sum2/total_girls
 PRINT*,"total no of boys=",total_boys,"average_boys_height=",avg_boys
 PRINT*,"total no of girls=",total_girls,"average_girls_height=",avg_girls
END

COUNT CONTROL DO LOOP

Where count, initial value, final value and
increment are integer variable names.

DO count=initial value, final value, increment
 block of statements
END DO

DO count=initial value, final value
 block of statements
END DO

Number of iterations=(final value - initial value + increment)/increment

Example: Tabulation of celsius to fahrenheit conversion

!USE OF COUNT CONTROLLED LOOP TO TABULATE CELSIUS TO
!FAHRENHEIT CONVERSION
PROGRAM temp_conv
IMPLICIT NONE
INTEGER :: initial_celsius,final_celsius,celsius
REAL :: fahrenheit
PRINT *, "Type initial and final celsius values"
READ * ,initial_celsius,final_celsius
PRINT *,"Celsius Fahrenheit"
DO celsius=initial_celsius,final_celsius
fahrenheit = 1.8*REAL(celsius) + 32.0
PRINT *,celsius," ",fahrenheit
END DO
PRINT *,"End of conversion"
END PROGRAM temp_conv

Finding negative integer

If condition is true then it transfers control to the
DO statement.

IF(number>=0)cycle

!DATA IS A LIST OF INTEGERS
!REQUIRED TO FIND SERIAL NO.OF NEGATIVE INTEGERS
PROGRAM find_negative
IMPLICIT NONE
INTEGER :: serial,number,m,count_negative=0
PRINT *, "Type no. of integers"
READ *,m
DO serial=1 ,m
PRINT *,"Type integer"
READ * ,number
PRINT *,"Number =",number
IF(number >= 0) CYCLE
count_negative = count_negative + 1
PRINT *,"Serial =",serial," ",number
END DO
PRINT *,"Number of negative numbers =",count_negative
END PROGRAM find_negative

Summing Series with DO loop

EXAMPLE: Finding sum of series
!SUMMING OF SERIES WITH DO LOOP
PROGRAM sum_series
IMPLICIT NONE
REAL :: x,term,sum
INTEGER :: i,n,denominator
PRINT *, "Type values of x and n"
READ *,x,n
PRINT *,"x =",x," n =",n
sum = x
term = x
DO i=2,n
denominator=(2*i-2)*(2*i-1)
term=term*(-x)*(x)/REAL(denominator)
sum=sum + term
END DO
PRINT *,"SL!m =",sum
END PROGRAM sum_series

Least Square fitting parameters

EXAMPLE: Finding sum of series
!x,y COORDINATES .THE STRAIGHT LINE IS y=mx+c
PROGRAM straight_line
IMPLICIT NONE
INTEGER :: i,n
REAL :: sum_x=0,sum_y=0,sum_xy=0,sum_xsq=0,x,y,numerator,denominator,m,c
!READ THE NUMBER OF POINTS n
PRINT *, "Type no. of points"
READ *,n
DO i=1,n
PRINT *, "Type values of x and y"
READ *,x,y
PRINT *,"x =",x," Y =",y
sum_x = sum_x + x
sum_y = sum_y + y
sum_xy = sum_xy + x*y
sum_xsq = sum_xsq + x*x
END DO
numerator = REAL(n)*sum_y - sum_x*sum_y
denominator = REAL(n)*sum_xsq - sum_x*sum_x
m = numerator/denominator
c = (sum_y - m*sum_x)/REAL(n)
PRINT *,"Equation of straight line is"
PRINT *,"y =",m,"x +",c
END PROGRAM straight_line

P(k)=exp(-a) a/k a(k-1)/(k-1)!=a/k P(k-1)

The function exp(-a) which is independent of k is computed outside
the DO loop and only the terms dependent on k are computed
inside the loop.

Program for Poisson function

EXAMPLE: Tabulation of Poisson function
!POISSON FUNCTION TABULATION
PROGRAM poisson
IMPLICIT NONE
INTEGER:: k
REAL :: a,pois
PRINT *, "Type value of a"
READ *,a
PRINT *,"a= ",a
pois = EXP(-a)
k=0
PRINT *,"k poisson(k)"
PRINT *,k," ",pois
DO k=1,15
pois = pois*a/REAL(k)
PRINT *,k," ",pois
END DO
END PROGRAM poisson

Rules to be remembered in writing DO Loops

 Rule 1: The DO loop indices should not
be reals. Only integers are allowed.

 Rule 2: Enclosed within a DO loop there may be other DO
loops. That is. the DO to END DO blocks of latter DOs must be
enclosed within the DO to END DO block of the first one, A set
of DOs satisfying this rule is called nested DOs.

Outer loop: DO i = 1, 10

Inner loop: DO j = 2, 20

END DO inner loop

END DO outer loop

EXAMPLE: Two dimensional Poisson function
!TABULATING TWO DIMENSIONAL POISSON FUNCTION
PROGRAM poisson_2
IMPLICIT NONE
INTEGER :: k,m
REAL:: poisson,a=0.1 ,b=0.1 ,poisson_x
!CALCULATE p(O,O)
poisson = EXP(-a)*EXP(-b)
k = 0;m = 0
PRINT *,"k =",k," m=",m," poisson=",poisson
outer: DO m=1 ,5
poisson = poisson * a/REAL(m)
poisson_x = poisson
inner: DO k=1, 10
poisson_x = poisson_x*b/REAL(k)
PRINT *,"k =",k," m=",m," poisson=",poisson_x
END DO inner
END DO outer
END PROGRAM poisson_2

 Rule 3: The DO loop parameters count, initial-
value, final-value and increment should not be
redefined by statements within the DO loop
block.

EXAMPLE: Counting high Marks and finding average
!HIGH MARKS AND AVERAGE
PROGRAM marks_90
IMPLICIT NONE
INTEGER ::
roll_no,marks,count=0,high_count=0,sum_marks=0,avg_marks
PRINT *,"List of roll numbers with marks> 90"
DO
READ *,roll_no,marks
IF(roll_no < 0) EXIT
sum_marks = sum_marks + marks
count = count +1
IF(marks <=90) CYCLE
PRINT *,"Roll no =",roll_no," marks =",marks
high_count = high_count +1
ENDDO
avg_marks = sum_marks/count
PRINT *,"No.of students with marks> 90 = ", high_count
PRINT *,"Total no.of students =",count
PRINT *,"Average marks =",avg_marks
END PROGRAM marks_90

EXERCISE

 Write program for the problems given at
the end of chapter 6 in reference book.

Thank you

	DO loops�in Fortran 90 Programming Language
	Text book
	Outline
	Example
	LOOP
	DO LOOP
	Summing digits by DO loop
	Example: Reverse order of a number
	General form of DO Loop
	EXAMPLE
	COUNT CONTROL DO LOOP
	Slide Number 12
	Example: Tabulation of celsius to fahrenheit conversion
	Finding negative integer
	Summing Series with DO loop
	Slide Number 16
	Least Square fitting parameters
	Slide Number 18
	Program for Poisson function
	Slide Number 20
	Rules to be remembered in writing DO Loops
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	EXERCISE
	Thank you

