

 Data Base Management Systems
1

UNIT-5

5. TRANSACTIONS

5.1. Introduction

• A transaction is a unit of program execution that accesses and possibly updates
various data items.

• The transaction consists of all operations executed between the statements begin
and end of the transaction

• Transaction operations: Access to the database is accomplished in a transaction
by the following two operations:

 read (X): Performs the reading operation of data item X from the database
 write (X): Performs the writing operation of data item X to the database

• A transaction must see a consistent database
• During transaction execution the database may be inconsistent
• When the transaction is committed, the database must be consistent
• Two main issues to deal with:

 Failures, e.g. hardware failures and system crashes
 Concurrency, for simultaneous execution of multiple transactions

5.2 ACID Properties

 To preserve integrity of data, the database system must ensure:

• Atomicity: Either all operations of the transaction are properly reflected in the
database or none are

• Consistency: Execution of a transaction in isolation preserves the consistency of
the database

• Isolation: Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions;
intermediate transaction results must be hidden from other concurrently executed
transactions

• Durability: After a transaction completes successfully, the changes it has made
to the database persist, even if there are system failures

 Example of Fund Transfer: Let Ti be a transaction that transfers 50 from
account A to B. This transaction can be illustrated as follows

 Transfer $50 from account A to B:

Ti : read(A)
 A := A – 50
 write(A)
 read(B)
 B := B + 50
 write(B)

 Data Base Management Systems
1

• Consistency: the sum of A and B is unchanged by the execution of the transaction.
• Atomicity: if the transaction fails after step 3 and before step 6, the system should

ensure that its updates are not reflected in the database, else an inconsistency will
result.

• Durability: once the user has been notified that the transaction has completed, the
updates to the database by the transaction must persist despite failures.

• Isolation: between steps 3 and 6, no other transaction should access the partially
updated database, or else it will see an inconsistent state (the sum A + B will be
less than it should be).

5.3 Transaction and Schedules

• A transaction is seen by the DBMS as a series, or list of actions. We therefore
establish a simple transaction model named as transaction states.

 Transaction State: A transaction must be one of the following states:

• Active, the initial state; the transaction stays in
 this state while it is executing

• Partially committed, after the final statement
has been executed.

• Committed, after successful completion.

• Failed: after the discovery that normal execution
 can no longer proceed.

• Aborted: after the transaction has been rolled
back and the database restored to its state prior
to the start of the transaction.

5.4 Concurrent Execution and Schedules

• Concurrent execution: executing transactions simultaneously has the following
advantages:

 increased processor and disk utilization, leading to better throughput
 one transaction can be using the CPU while another is reading from or

writing to the disk
 reduced average response time for transactions: short transactions need

not wait behind long ones

• Concurrency control schemes: these are mechanisms to achieve isolation

 to control the interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database

• Schedules: sequences that indicate the chronological order in which instructions
of concurrent transactions are executed

 Data Base Management Systems
1

 a schedule for a set of transactions must consist of all instructions of those
transactions

 must preserve the order in which the instructions appear in each
individual transaction

 Example Schedules

• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.
The following is a serial schedule (Schedule 1 in the text), in which T1 is
followed by T2.

• Let T1 and T2 be the transactions defined previously. The following schedule
(Schedule 3 in the text) is not a serial schedule, but it is equivalent to Schedule 1.

• The following concurrent schedule (Schedule 4 in the book) does not preserve the
value of the the sum A + B

 Data Base Management Systems
1

 Serializable Schedule

• A serializable schedule over a set S of committed transactions is a schedule
whose effect on any consistent database is guaranteed to be identical to that of
some complete serial schedule over S. i.e., even though the actions of transactions
are interleaved, the result of executing transactions serially in different order may
produce different results.

• Example: The schedule shown in the following figure is serializable.

T1 T2
R(A)
W(A)

R(B)
W(B)

Commit

R(A)
W(A)

R(B)
W(A)

Commit

Even though the actions of T1 and T2 are interleaved, the result of this schedule is
equivalent to first running T1 entirely and then running and T2 entirely. Actually
T1‘s read and write of B is not influenced by T2‘s actions on B, and the net effect
is the same if these actions are the serial schedule First T1, then T2. This schedule
is also serializable if first T2, then T1. Therefore if T1 and T2 are submitted
concurrently to a DBMS, either of these two schedules could be chosen as first

• A DBMS might sometimes execute transactions which is not a serial execution
i.e., not serializable.

• This can be happen for two reasons:
 First the DBMS might use a concurrency control method that ensures the

executed schedule itself.
 Second, SQL gives programmers the authority to instruct the DBMS to

choose non-serializable schedule.

 Data Base Management Systems
1

 Anomalies due to Interleaved execution

• There are three main situations when the actions of two transactions T1 and T2
conflict with each other in the interleaved execution on the same data object.

 Write-Read (WR) Conflict: Reading Uncommitted data.
 Read-Write (RW) Conflict: Unrepeatable Reads
 Write-Write (WW) Conflict: Overwriting Uncommitted Data.

• Reading Uncommitted Data (WR Conflicts)

 Dirty Read: The first source of anomalies is that a transaction T2 could
read a database object A that has been just modified by another transaction
T1, which has not yet committed, such a read is called a dirty read.

 Example: Consider two transactions T1 and T2, where T1 stands for
transferring $100 from A to B and T2 stands for incrementing both A and
B by 6% of their accounts. Suppose that their actions are interleaved as
follows:

(i) T1 deducts $100 from account A, then immediately
(ii) T2 reads accounts of A and B adds 6% interest to each, and then,
(iii) T1 adds $100 to account B.

This corresponding schedule is illustrated as follows:

T1 T2
R(A)
A: = A -100
W(A)

R(B)
B: = B + 100
W(B)
Commit

R(A)
A: = A + 0.06 A
W(A)
R(B)
B:= B+.06 B
W(B)
Commit

The problem here is T2 has added incorrect 6% interest to each A and B. Because
before commitment that $100 is deducted from A, it has added 6% to account A
before commitment that $100 is credited to B, it has added 6% to account B.
thus, the result of this schedule is different from the result of the other schedule
which is serializable: first T1 then T2.

• Unrepeatable Reads (RW Conflicts)

 The second source of anomalies is that a transaction T2 could change the value of
an object A that has been read by a transaction T1 and T1 is still in progress. This
situation causes a problem that, if T1 tries to read the value of A again, it will get
a different result, even though it has not modified A in the meantime. But, this
situation could not arise in a serial execute of two transactions: this, it is called as
unrepeatable read.

 Data Base Management Systems
1

 Example: Suppose that both T1 and T2 reads the same value of A, say 5. Then T1
has incremented A value to 6 but before commitment as A value 6, T2 has
decremented A value from 5 to 4. Thus, instead of answer of A value as 5, i.e.,
from to 5 we got an answer 4 which is incorrect.

• Overwriting Uncommitted Data (WW Conflicts)

 The third source of anomalies is that a transaction T2 could overwrite the value of
an object A, which has already been modified by a transaction T1, while T1 is
still in progress.

 Example: Suppose that A and B are two employees, and their salaries must be
kept equal. Transaction T1 sets their salaries to $1000 and transaction T2 sets
their salaries to $2000.
The following interleaving of the actions T1 and T2 occurs:

i) T1 sets A’s salary to $1000, at the same time, T2 sets B’s salary to $2000.
ii) T1 sets B’s salary is set to to $2000, at the same time, T2 sets A’s salary

to $2000.

As a result A’s salary is set to $2000 and B’s salary is set to $1000, i.e., the result
is not identical

 Blind-Write: Neither transaction reads a value before writing it-such a
write is called a blind-write.
The above example is the best example of blind write because T1 and T2
are concentrating only on writing but not on reading.

 Schedules involving aborted Transactions

• All transactions of aborted transactions are to be undone, and we can therefore
imagine that they were never carried out to begin with.

• Example: Suppose that transaction T1 deducts $100 from account A then immediately
before committing A’s new value the transaction T2 reads the current values of accounts
A and B and adds 6% interest to each, then commits, but incidentally T1 is aborted. So,
we get incorrect result of transaction T2 because T1 was aborted in the middle of the
process and T2 has taken incorrect value of A by T1 and added 6%. We say that such a
schedule is Unrecoverable Schedule. The corresponding schedule is shown as follows:

T1 T2
R(A)
A: = A -100
W(A)

Abort

R(A)
A: = A + 0.06 A
W(A)
R(B)
B:= B+.06 B
W(B)
Commit

• Whereas, a recoverable schedule is one in which transactions read only the
changes of committed transactions.

5.5 Lock-Based Concurrency Control

 Data Base Management Systems
1

• Locking is a concurrent control technique used to ensure serializability.
• A lock disables occurs to data. There are two types of locks. A transaction needs

to acquire a lock before performing a transaction.
• The read lock is known as shared lock and write lock is known as exclusive lock.
• A locking protocol is a set of rules that a transaction follows to attain

serializability
 Strict Two-Phase Locking (Strict 2PL) Protocol

• The Strict 2PL has the following two rules:

 Rule 1: A transaction can read data only when it acquires a shared lock
and can write data only when it acquires an exclusive lock on object.

 Rule 2: A transaction should release the locks when it is completed.
• The entire request for the locks is maintain by DBMS without user intervention.

A transaction is blocked until it gets a requested lock.
• If two transactions operate on two independent database objects then locking

protocol allows such transactions. However if transactions operate on related
data, locking protocol allows only the transaction which acquired lock.

• Example: Consider two transactions, T1 increments the values by 10 and T2
increments then by 20% of the values. If the initial values of database objects A
and B are 10, then after serial execution they would have 24.

T1 T2
R(A)
A: = A + 10 [A = 20]
W(A)

R(B)
B: = B + 10 [B = 14]
W(B)
Commit

R(A)
A: = A + 0.20 A [A = 24]
W(A)
R(B)
B: = B + 0.20 B [B = 12]
W(B)
Commit

 Such an interleaving would yield A = 24 and B = 14 as results.

Using Strict 2PL we can avoid such anomalies. When T1 wishes to operate on A,
it has to first acquire the key on A. When T1 acquires the key no other transaction
can interleave.

T1 T2
X(A)
R(A)
A: = A +10
W(A)
X(B)

 Data Base Management Systems
1

R(B)
B: = B + 10
W(B)
Commit

X(A)
R(A)
A: = A + 0.20 A
W(A)
X(B)
R(B)
B:= B+.20 B
W(B)
Commit

• Using strict 2PL, the transaction first acquire a lock performs the action. However
T2 cannot be interleaved and hence results in correct execution.

 Deadlocks

• Deadlock is a situation where two or more transactions wait for locks held by
other to be released.

• Example: T1 has lock on A and T2 has lock on B. If T1 requests for lock on B by
holding lock on A. Similarly, T2 requests for lock on B. Either T1 nor T2 can
continue with the execution. This is called deadlock.

• Deadlocks can be handled in three ways.
i) Time-outs
ii) Deadlock prevention
iii) Deadlock detection and recovery

 Timeouts: With this approach, the transaction waits for predefined
amount of time before acquiring the lock. If the time-outs, DBMS
assumes that so there could be a deadlock and aborts the transaction
holding the object.

 Deadlock prevention: DBMS looks ahead to determine a deadlock.
If a deadlock is predicted, then it aborts the transaction and never
allows a deadlock to occur. Two algorithms are used for the purpose.

i) Wait-Dies
ii) Wound-Wait.

 Deadlock Detection: DBMS waits until a deadlock occurs and then
takes measures to solve the deadlock problem. It constructs a wait-
for graph (WFG) for the purpose.

5.6 Performance of Locking

• Long-based techniques use two methods to acquire serializabilty.
i) Blocking
ii) Aborting

 Data Base Management Systems
1

 Blocking: A transaction is blocked until it gets a lock for operation.
Deadlock is an extreme situation where a transaction blocks forever
waiting for lock. This can be avoided by aborting the transaction.

 Abort: A transaction is forced to stop its execution and to restart.

• Practically, only 1% of transactions suffer from deadlocks and the transaction are
aborted even less than 1%. Hence, there needs a wide consideration only on the
delay introduced by blocking. These blocking delays in turn have an adverse
effect on the throughput.

• Initially the throughput of the system increases with increasing number of
transactions. This is because initially transactions are unlikely to conflict. As the
transactions are increased, the throughput will not increase proportionally because
of certain conflicts. As the transactions increase, there will reach a point when the
system can no more handle the transactions and reduces the system throughput.
This point is called thrashes.

• If the system reaches the thrash point, the DBA takes effective measures to reduce

the number of transactions.
• The following steps are taken to increase throughput:

i) Reducing the situation where two objects request for same lock.
ii) Each transaction should be allowed to hold the lock for a short period of

time such that other transactions are not blocked for a long time.
iii) Avoiding hot spots. A frequently accessed database object is known as hot

spots. This hot spot reduces the system performance drastically.

5.7 Transaction Support in SQL

• We now consider what support SQL provides for users to specify transaction-
level behavior.

 Transaction Creation

• Transaction can be created by using certain SQL statements like:
i) Select
ii) Update
iii) Create

 Data Base Management Systems
1

• Once a transaction is created, it continues the execution of successive transactions
until it finds a COMMIT and ROLLBACK statement.

• Two additional statements are provided to handle long-running transactions. They
are:

i) Save point
ii) Chained Transaction

 Save points: ROLLBACK undoes all the operation previously
performed, but in long-running applications, it is always desired to
roll back only till certain extent and save the other operations. This
facility is provided by SAVEPOINT. This statement is generally used
for decision making.

Any number of save points can be defined in long-run application.
The syntax for savepoint is given by:

SAVEPOINT <savepoint name>

There are two types of savepoints,

i) Statement
ii) Named

The savepoints have two advantages:

i) Initiating several transactions can do easily.
ii) We can rollback to several savepoints

 Chained Transaction: The statements make rollback and commit
operations even simpler.

Consider the following query:

SELECT*
FROM Students s
WHERE s.category = “Sports”

Suppose there are two transactions.

i) Executes the above query.
ii) The other transaction adds grace marks to students who are in

sports category with greater than 60% of marks.

It is difficult choice what should be locked. We can both lock the
table for first transaction and provide an exclusive lock for second
transaction. Though it provides for serializabilty, it provides poor
concurrency.

A better choice is to lock smaller objects. Instead of locking the
complete table, it would be better to provide a shared lock only on
the rows which satisfies the condition, “s.category = “Sports”. The
other rows which do not have category as sports can run T1 and T2
concurrently.

 Data Base Management Systems
1

It is a complicated task to choice the object that should be locked.
DBMS obtains locks at various granularity’. Some transaction serve
better if the shared lock is provided at row level and some few
transactions serve better if lock is provided to complete table.

At times, the decision made for the previous ‘students’ example may
also fail. Consider a third transaction T3, which adds a new row to
students table with category as ‘sports’. Since T1 is provided a
shared lock, it does not stop when T2 will be executed. That is it may
generate two different answers upon executing twice. This effect is
called ‘PHANTOM” problem.

 Transaction characteristics in SQL

• The three characteristics of a transaction in SQL are,

i) Access mode
ii) Diagnostics size

iii) Isolation level
 Access mode

This specifies the access a user can have on the data. If the access mode is READ
ONLY, then it allows the user only to read the data. He cannot perform any data
manipulation operations like insert, delete, update, create etc.

If the access mode is READ WRITE, then the user can read and perform various
data manipulation operations. If access mode is READ ONLY, then exclusive
locks are not required and hence increase concurrency.

 Diagnostics Size

 It is the total number of errors.

 Isolation Level

 Transaction isolation levels are,
i) Read Uncommitted

ii) Read committed
iii) Repeatable Read
iv) Serializable

♦ Read Uncommitted

A transaction can read the modifications made by an uncommitted
transaction. Thus it becomes vulnerable to phantom problem.

An uncommitted transaction never obtains a shred lock before reading
and it needs to have READ-ONLY access mode. As it cannot write, it
does not need exclusive lock as well.

♦ Read Committed

A transaction reads the values only from committed transaction. It also
does not allow other transactions to modify a value written by T.

 Data Base Management Systems
1

However, the value T reads may be modified by some other transaction,
hence prone to phantom problem.

Unlike READ UNCOMMITTED, a transaction obtains an exclusive lock
before writing and a shared lock before reading objects.

♦ Repeatable Read

A transaction ‘Y’ reads only from a committed transaction. No other
transaction is allowed to change a value, read or written by the
transaction ‘Y’. It sets locks same as a SERIALILZABLE transaction
except index locking.

♦ Serializable

A Serializable transaction enjoys the highest degree of isolation. A
Serializable transaction, ‘T’ reads only from a committed transaction and
a value read or written by ‘T’ is not changed by other transactions until a
T commits. T totally avoid phantom phenomenon.

It is the safest of all isolations.
5.8 Introduction to Crash Recovery

• A transaction may fail because of hardware or a software failure. It is the
responsibility of the recovery manager to handle such failure and ensure
‘atomicity’ and ‘durability’. It attains atomicity by undoing the uncommitted
transactions. It also attains durability by retaining the committed transaction
results even after system crashes.

• Under normal execution, transaction manger takes care of serializability by
providing locks when requested. It writes the data to the disk o\in order to avoid
loss of data after the system crash.

 Stealing Frames and forcing Pages

• Steal Approach: The changes mode on an object ‘0’ by a transaction is written
onto the disk even before the transaction is committed. This is because another
transaction wants a page to be loaded and buffer manger finds replacing frame
with object ‘0’ as optimal.

• Force Approach: All the objects in buffer pool are forced to disk after the
transaction is committed.

• The simplistic implementation of recovery management is to use no-steal-force
approach. With no steal, the data will not be written until a transaction is
committed; hence there is no need of an undo operation. And force approach
enables us to write data to the disk after committing; hence we need no perform
redo operation.

• Through these approaches are simple, they have certain disadvantages.

i) No steal approach requires a large buffer pool.
ii) Force approach involves expensive I/O costs.

 Data Base Management Systems
1

• If an object is frequently modified, then it needs to written onto the disk very
frequently involve expensive I/O operation.

• Hence steal and no-force approach is implemented by recovery management.
Using these techniques the page is not written onto disk when the modifying
transaction is still active. And it does not force a page to be written onto disk,
when transaction commits.

 Recovery during Normal Execution

• The recovery manger, stores the modifications made onto a storage which does
not react to system failures. Such storage is called stable storage.

• The modifications made to the data is called log. Recovery manager loads the log
onto the stable storage before the new changes are made.

• If a transaction is aborted, then log enables recovery manager to undo the
operations and redo the operations if it is committed.

• No force approach does not write data into the disk after the transaction is
committed. If a transaction is committed just before a crash, then the
modifications made by transaction will not be loaded onto disk. This modified
data is reloaded from the stable storage.

• Steal approach enables to write data onto disk before committing. If a crash
occurs before committing, then all the data modified onto the disk must be
undone. This is done with help of log.

 Overview of ARIES

• ARIES is an algorithm for recovering from crash, that uses no-force, steal
approach.

• ARIES algorithm has three phases:

 Analyses Phase: If analyses the buffer pool to identify the active
transactions and dirty pages.

 Undo Phase: If the modified data is loaded into disk before a transaction
commits, then it must undo the modification in case of crash.

 Redo Phase: It must restore the data which it was before the crash. This is
done if the data modified by committed transaction is not loaded onto the
disk.

 Atomicity: Implementing Rollback

• It is important to recognize that the recovery subsystem is also responsible for

executing the ROLLBACK command, which aborts a single transaction.

• Indeed, the logic (and code) involved in undoing a single transaction is identical
to that used during the Undo phase in recovering form a system crash.

 Data Base Management Systems
1

• All log records are stored in a linked list and to operate rollback, the linked list is
accessed in reverse order.

6. CONCURRENCY CONTROL AND CRASH RECOVERY

6.1 Serializability

• Basic Assumption – Each transaction, on its own, preserves database consistency
 i.e. serial execution of transactions preserves database consistency

• A (possibly concurrent) schedule is serializable if it is equivalent to a serial
schedule

• Different forms of schedule equivalence give rise to the notions of conflict
serializability and view serializability

• Simplifying assumptions:
 ignore operations other than read and write instructions
 assume that transactions may perform arbitrary computations on data in

local buffers between reads and writes
 simplified schedules consist only of reads and writes

 Conflict Serializability

• Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if
there exists some item Q accessed by both li and lj, and at least one of these
instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.
3. li = write(Q), lj = read(Q). They conflict
4. li = write(Q), lj = write(Q). They conflict

• Intuitively, a conflict between li and lj forces a (logical) temporal order between
them

 Data Base Management Systems
1

• If li and lj are consecutive in a schedule and they do not conflict, their results
would remain the same even if they had been interchanged in the ordering

• If a schedule S can be transformed into a schedule S´ by a series of swaps of non-
conflicting instructions, we say that S and S´ are conflict equivalent.

• We say that a schedule S is conflict serializable if it is conflict equivalent to a
serial schedule

• Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above
schedule to obtain either the serial schedule < T3, T4 >,
or the serial schedule < T4, T3 >.

• Schedule 3 below can be transformed into Schedule 1,
a serial schedule where T2 follows T1, by series of
swaps of non-conflicting instructions.
Therefore Schedule 3 is conflict serializable.

 View Serializability

• Let S and S´ be two schedules with the same set of transactions. S and S´ are view
equivalent if the following three conditions are met, where Q is a data item and Ti
is a transaction:

1. If Ti reads the initial value of Q in schedule S, then Ti must, in schedule
S´, also read the initial value of Q

2. If Ti executes read(Q) in schedule S, and that value was produced by
transaction Tj (if any), then transaction Ti must in schedule S´ also read
the value of Q that was produced by transaction Tj

3. The transaction (if any) that performs the final write(Q) operation in
schedule S (for any data item Q) must perform the final write(Q) operation
in schedule S´

 NB: View equivalence is also based purely on reads and writes

• A schedule S is view serializable it is view equivalent to a serial schedule
• Every conflict serializable schedule is also view serializable
• Schedule 9 (from book) — a schedule which is view-serializable but not conflict

serializable

• Every view serializable schedule that is not conflict serializable has blind writes

 Data Base Management Systems
1

 Other Notions of Serializability

• This schedule produces the same outcome as the serial schedule < T1, T5 >
• However it is not conflict equivalent or view equivalent to it
• Determining such equivalence requires analysis of operations other than read and

write

 Testing for Serializability

• Consider some schedule of a set of transactions T1, T2, ..., Tn
• Precedence graph: a directed graph where the vertices are transaction names
• We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the

data item before Tj
• We may label the arc by the item that was accessed
• Example:

• Example Schedule and Precedence Graph

• A schedule is conflict serializable if and only if its precedence graph is acyclic

 Data Base Management Systems
1

 Cycle-detection algorithms exist which take order n2 time, where n is the number
of vertices in the graph

 If precedence graph is acyclic, the serializability order can be obtained by a
topological sorting of the graph. This is a linear order consistent with the partial
order of the graph. For example, a serializability order for this graph is T2 → T1
→ T3 → T4 → T5

• The precedence graph test for conflict serializability must be modified to apply to
a test for view serializability

 The problem of checking if a schedule is view serializable is NP-complete. Thus
existence of an efficient algorithm is unlikely. However practical algorithms that
just check some sufficient conditions for view serializability can still be used

Example of an acyclic precedence graph

 Concurrency Control vs. Serializability Tests

• Goal – to develop concurrency control protocols that will ensure serializability
• These protocols will impose a discipline that avoids nonseralizable schedules
• A common concurrency control protocol uses locks

 while one transaction is accessing a data item, no other transaction can modify it
 require a transaction to lock the item before accessing it
 two standard lock modes are “shared” (read-only) and “exclusive” (read-write)

6.2 Recoverability

 Need to address the effect of transaction failures on concurrently running
transactions.

• Recoverable schedule: if a transaction Tj reads a data item previously written by a
transaction Ti , the commit operation of Ti appears before the commit operation
of Tj

• The following schedule (Schedule 11) is not recoverable if T9 commits
immediately after the read

 Data Base Management Systems
1

• If T8 should abort, T9 would have read (and possibly shown to the user) an
inconsistent database state. Hence database must ensure that schedules are
recoverable

• Cascading rollback – a single transaction failure leads to a series of transaction
rollbacks

• Consider the following schedule where none of the transactions has yet
committed (so the schedule is recoverable)

• If T10 fails, T11 and T12 must also be rolled back
• Can lead to the undoing of a significant amount of work

• Cascadeless schedules — cascading rollbacks cannot occur; for each pair of
transactions Ti and Tj such that Tj reads a data item previously written by Ti, the
commit operation of Ti appears before the read operation of Tj

• Every cascadeless schedule is also recoverable
• It is desirable to restrict the schedules to those that are cascadeless

6.3 Lock Management

• The data items must be accessed in a mutually exclusive manner in order to
ensure serializability i.e., a data item can be accessed by only one transaction at a
time. This can be accomplished by allowing the transaction to access a dataitem
only if it is holding a lock o that data item.

• A lock manager is a component of the DBMS that keeps track of the locks issued
to the transactions. It maintains a hash tables with the data object identifier as a
key called Lock Table.

• It also maintains a unique entry for each transaction in a transaction table (TT)
and each entry contains a pointer to a series of locks held by the transaction.

• A Lock Table Entry: While can either be a page or a record for an object
contains the following information:

i) The number of transactions which holds a lock on the object currently
which can be more than one in shared mode.

ii) The nature of the lock which can either be shared or exclusive and
iii) A pointer to a queue holding lock requests.

• Locking Modes
i) Shared: A transaction T-I can read the dataitem P but cannot write it,

if it is holding a shared, mode lock. It is denoted by S.
ii) Exclusive: A transaction T-I can both read and write the dataitem P if

it is holding an exclusive-mode lock. It is denoted by X.

 Data Base Management Systems
1

 Implementing Lock and Unlock Requests

• According to the strict 2PL, a transaction must obtain and hold a shred (S) or
exclusive (X) lock on some object ‘O’ before it reads or writes an object ‘O’.

• A transaction T1 can acquire the needed locks by sending a lock request to the
lock manager in this manner.

1. If a request is made for a shared lock and the request queue is empty and
further the object is not locked currently in an exclusive mode then the
lock manager accepts the lock requests and grant the needed lock and
updates the entry for an object in the lock table.

2. If a request is made for an exclusive lock(X) and none of the transactions
is currently holding a lock on the object i.e., request queue is empty, then
the lock manager grants the lock and updates the corresponding entry in
the lock table.

3. If the locks are not currently available then the request is added to the
request – queue and the (requesting) corresponding transaction is
suspended.

• A transaction releases all the acquired locks on its abortion or commitment. Once
a lock is released a lock table entry for an object is updated by the lock manager
and grants the lock to the requesting transaction present at the head of the queue.

• If more than one request is made for the shared lock then all the requests can be
granted together. All the pending lock requests are queued.

• If transaction T1 acquires a shared lock on object ‘A’ and if transaction T2
requests for exclusive requests are placed in the queue, and a lock is granted when
its predecessor releases the lock. Hence T2 is granted the lock when T1 unlocks.

• Atomicity Assurance in Locking and Unlocking

 To ensure the atomicity of lock and unlock operations access to the lock-
table can be achieved by using a semaphore which is an OS synchronization
mechanism.

 When a transaction issues an exclusive lock (X) request, the lock manager
checks finds and grant the request if no other transaction is holding a lock on
an object.

6.4 Lock Conversions

• If a transaction which is currently holding a shared lock on some object ‘O’ wants
to obtain an exclusive lock on ‘O’ then this “upgrade lock” request is handled by
granting the X on ‘O’ if none of the transaction holds ‘S’ on ‘O’ and no other
request is present at the head of the queue. Otherwise the two transactions are
deadlocked (if they request for the X on the same object).

• This deadlocks can be avoided by acquiring X locks the start-up and then
downgrading them to S locks.

 Data Base Management Systems
1

• Advantage of lock-down Grading: It improves the overall performance i.e,
throughput by reducing deadlocks.

• Disadvantage: It reduces concurrency by acquiring write locks when they not
actually needed. This drawback can be reduced by using update lock which is sent
initially and prevents conflicts between the read operations else it is downgraded
to a shared lock, if not needed. In case of object updates if is upgraded to X lock
thereby preventing deadlocks.

6.5 Dealing with Deadlocks

• Deadlock definition: Deadlock is a situation where one transaction is waiting for
another transaction to release locks before it can proceed.

• Example: Suppose a transaction T1 holds an exclusive lock on some dataitem P
and transaction T2 holds an exclusive lock on data item Q. Now, T1 requests an
exclusive lock on Q and T2 requests for an exclusive lock on P and are queued.
So, T1 is waiting for T-2 to release its lock and T2 is waiting for T1 to release its
lock leading to a situation called deadlock where neither of the two transactions
can proceed.

• The DBMS is responsible for the detection and prevention of such deadlocks.
 Deadlock Prevention

• As the saying goes, prevention is better than cure, it is always better to prevent a
deadlock rather than waiting for it to occur and then taking measures to avoid
deadlock. It can be prevented by prioritizing the transactions.

• If a transaction Ti requests a lock which held by some other transaction Tj then the
lock manager can use one of these policies.

• Wait-Die: Wait- Die is a non preemptive scheme. As the name specifies, the
transaction either waits for the lock or dies. The decision on whether to wait or die
is made based on the time stamp. A transaction T2 time stamp is greater than the
time stamp value of a transaction T1 currently using the lock, then T2 cannot wait
and is rolled back.

 Example: T3 with the time stamp values as 10, 20, 30 respectively. If a
transaction T1 requests a data item which is held by T2, then it is allowed to wait.
If T3 requests a dataitem which is held by T2, then T3 will be rolled back (dies).

• Wound – Wait: It is a preemptive scheme wherein if a transaction Ti requests a
dataitem which is currently under the control of transaction Tj, it is allowed to
wait if its time stamp value is greater than that of Tj, else Tj is rolled back.

 Example: Consider three transactions T1, T2 and T3 with the time stamp values
as, respectively. If a transaction T1 requests a dataitem which is held by T2 then
the dataitem will be preempted from T2 and T2 is rolled back. Also, if T3 requests
a dataitem which is held by T2 then T3 is allowed to wait since its time stamp is
greater than that of transaction Tj.

 Data Base Management Systems
1

• Advantages of wait-die Scheme

i) No occurrence of deadlock, because lower priority transactions need not have to
wait for higher priority transactions.

ii) It avoids starvation (i.e, no transaction is allowed to progress and rolled back
repeatedly).

• Disadvantage: Unnecessary rollbacks may occur

• Advantages of Wound-wait scheme

1. Deadlock never occurs because higher priority transactions needn’t have to wait for
lower priority transaction.

2. It also avoids starvation.

• Disadvantage: Unnecessary rollbacks may occur.

• Note: When a transaction is aborted and restarted again it should get the same
time stamp as before abortion, otherwise reassignment of time stamps causes each
transaction to become the oldest transaction.

• Conservative 2PL: It is a variant of 2PL that can prevent deadlock between the
transactions by acquiring all the needed locks at the time of their beginning or
blocking, while waiting for these locks to be available. This scheme ensures that
no deadlocks can occur because a transaction acquires all the locks needed for its
execution.

• Deadlock Detection: In order to detect and recover from the deadlocks a system
must perform the following operations.

1. It should maintain the information about the allocation of the data items to
different transactions and the outstanding requests.

2. It should provide an algorithm that determines the occurrence of deadlock.

3. Whenever a deadlock has been detected find out the ways to recover from it. For
deadlock detection the lock manager maintains a structure called a waits for
graph in which nodes represents the active transactions and the are from Ti to Tj
(Ti → Tj) represents that Tk is waiting for Tj to release a lock. These edges are
added to the graph by the lock manager whenever a transaction requests a lock
and are removed when it grants lock requests.

• Example: Consider the wait – for graph as shown in figure (i)

The following points must be noted;

i) Transaction T1 is waiting for the transactions T2 and T3.
ii) Transaction T3 is waiting for the transaction T2.
iii) Transaction T2 is waiting for the transaction T4 Deadlock cannot occur as

there are no cycles is the graph.

 Data Base Management Systems
1

Further if a transaction T4 is requesting for an item held by T3 then the
edge T4→T3 is added to the wait-for graph resulting in a new state with a
cycle.

T2→T4→T3→T2 as shown below

The wait-for graph is checked periodically for the presence of cycles which
represents deadlock. When a cycle is found, the deadlock is resolved by aborting
corresponding transaction on a cycle thereby releasing its locks.

6.6 Specialized Locking Techniques

• The database objects are not always constant in the real world.

• For example, the number of customers of a bank will not be constant. Some may
withdraw their accounts and some may create new accounts. Thus the number of
database objects may grow of shrink. This varying number of database objects
reads to a problem called Phantom problem.

• The performance of database can be enhanced by using the protocol which clearly
explains the relationship between the objects. Two such cases include

 Tree structured index locking
 Collection of objects and containment relationship locking

 The Phantom Problem and the Dynamic Database Phantom Problem

• Suppose a transaction say T1 retrieve the rows of a record that satisfy certain

condition. Another transaction say T2 which is running concurrently inserts
another records satisfying the same condition. If T1 retrieves the rows again, it
will have a row which wasn’t present previously. This differing result of same
query is called phantom problem.

• Consider a student database. The principal can retrieve the records of the students
at any time. The administrator creates a new record for each new student’s
admission say transaction T1 returns the details of students and transaction, T1
adds a new record to the database.

• Suppose the principal is willing to see the records of students who have scored the
highest marks. Transaction T1 acquires shared lock runs to find the student with
highest score. Suppose, the highest score was found to be 500. However the
administrator provides admission to a new student who secures 520 marks. And
hence T2 acquires exclusive locks and updates the database.

• Now if T2 runs before T1, principal would view 520 marks. On the other hand if
T1 runs before T2, principal views 500 marks.

 Data Base Management Systems
1

 Concurrency Control in B+ Trees

• B+ Tree: B+ tree is a balanced tree which has an equi-length for all paths from

root to the leaf.

• Indices provide high level of abstraction and hence concurrency control in B+
trees ignores the index structure.

• The concurrent control in B+ trees is based on locking. The highest rend node is
locked and the complete tree is traversed. Locking overhead is negligible when
efficient locking protocols are used.

• Searches acquire a shared lock on the root node and proceeds further. The rood
node unlocks when its child takes up the lock.

• We can also obtain an exclusive lock on all the nodes of the tree. However for
insertions. Exclusive lock is required only in cases when the child node is full
hence this technique is not implemented.

• The efficient technique assigns a shared lock to the root node and proceeds further
by assigning shared lock to the child. If the child is not full, the lock on its parent
is released. However if the child is full, the lock on the parent is not released. This
is called “crabbing” or “lock-coupling”

 Multiple Granularity Locking

• It is a technique used for locking complex objects (object within an object)

• Example: A University contains several colleges, each college has many courses

and each course has several students. A student can select a preferred course in a
particular college.

• Similarly a database contains several files and each file contains many pages

which in turn is a gap of records. This is called containment hierarchy which can
be represented as a tree of objects. A transaction can obtain a lock on a selected
item just as a student chooses a course of his choice locking a node in a tree
involves locking all its children.

• Apart from S and X locks multiple granularity locking uses:

(i) Intension shared (IS) and
(ii) Intension exclusive (IX).

• Conflicts between the locks can be explained using the flowing table

 S X
IS Doesn’t conflicts Conflicts
IX Conflicts Conflicts

• Thus, if a transaction acquires on X or S lock on some node ‘i’, it must first lock
its parents either in IS or IX.

 Data Base Management Systems
1

• A transaction must obtain S and IX clock in order to read a file followed by the
modification of some of its records or it can also acquire SIX lock.

• Locks acquisition is a top-down approach whereas lock releasing is a bottom-up
approach (leaf-root). Multiple granularity locking is used in conjunction with
2PL, this ensures serializability as 2PL predicts when to release the locks.

• “Granularity” of the locking is an important issue. Hence fine granularity locks

are acquired in the beginning and after making some requests, the next higher
level granularity locks can be obtained. This phenomenon is called lock
escalation.

6.7 Concurrency control without locking.

• In DBMS the concurrency can be controlled without locking also, by using the
following techniques:

 Optimistic Concurrency Control
 Timestamp-Based Concurrency Control
 Multiversion Concurrency Control

 Optimistic Concurrency Control

• In this it is assumed that the conflicts between the transactions are occasional
hence there is no need for locking and time stamping.

• In this technique when a transaction reaches its COMMIT step, it is checked for

the presence of conflicts. On occurrence of it the transaction must be rolled back
and restarted. This happens rarely as there are very few conflicts.

• The transactions proceed in optimistic concurrency control in three phases as

follows:

 Read: The transaction executes, reading values from the database and
writing to private workspace.

 Validation: If the transaction decides that it wants to commit, the DBMS

checks whether the transaction could have conflicts with any other currently
executing transaction. If there is possibility to conflict, the transaction is
aborted, and its private workspace is cleared and it is restarted.

 Write: If validation determines that there are no possible conflicts, the

changes to data objects made by the transaction in its private workspace are
copied into the database.

• Remember, if there are few conflicts, then validation can be done efficiently, this
approach should lead to better performance than locking. But, if there are many
conflicts, the cost of repeatedly restarting transaction hurts performance.

SIX = S+IX

 Data Base Management Systems
1

• Thus, each transaction Ti is assigned a time stamp TS (Ti) at the beginning of its
validation phase, and the validation criterion checks whether the timestamp
ordering of transactions is an equivalent serial order transaction.

• For every pair of transactions Ti and Tj such that TS(Ti)< TS(Tj), one of the
following validation conditions must hold:

1. Ti completes (all three phases) before Tj begins.
2. Ti completes before Tj starts its write phase, and Ti does not write any

database objects read by Tj.
3. Ti completes its Read phase before Tj completes its Read phase, and Ti

does not write any database object, that is either read or written by Tj.
• To validate Tj, we must check to see that one of these conditions holds with

respect to committed transaction Ti such that TS(Ti) < TS(Tj). Moreover, each
condition ensures that Tj’s modifications are not visible to Ti.

• The first condition allows Tj to see some of Ti’s changes, but they execute
completely in serial order with respect to each other.

• The second condition allows Tj to read objects while Ti is still modifying objects,
but there is objects written by Ti, all of Ti’s writes precede all of Tj’s writes.

• The third condition allows Ti and Tj to write objects at the same time and thus,
have even more overlap in time than the second condition, but the sets of objects
written by the two transactions cannot overlap.

• Thus, no RW, WR, or WW conflicts are possible if any of these three conditions
is met and the concurrency is controlled without locking through an optimistic
concurrency control approach.

 Time Stamp –Based Concurrency control Time Stamp

• In optimistic concurrency control, a timestamp ordering is imposed on
transactions and validation checks that all conflicting actions occurred in the same
order.

• So, each transaction can be assigned a timestamp at startup, and we can ensure, at

execution time, that if an action ai of transaction Ti conflicts with action aj of
transaction Tj, ai occurs before aj if TS(Ti)< TS(Tj). If an action violates this
ordering, the transaction is aborted and restarted.

• The timestamp concurrency control is implemented by giving every database

object O a read timestamp RTS(O) and a write timestamp WTS(O). If transaction
T wants to read object O, and TS(T)<WTS(O), the order of the read with respect
to the most recent write on O would violate the timestamp order between this
transaction and the writer. Therefore, T is aborted and restarted with anew, larger
timestamp, if TS(T)> WTS(O), T reads O, and RTS(O) is set to the larger of
RTS(O) and TS(T).

• Now consider what happens when transaction T wants to write object O:

 Data Base Management Systems
1

1. If TS(T)<RTS(O), the write actions conflicts with the most recent read action
of O, and T is therefore aborted and restarted.

2. If TS(T)<WTS(O), a simple approach would be to abort T because it writes
action conflicts with the most recent write of O and is out of timestamp order.
However, we can safely ignore such writes and continue. Ignoring outdated
writes is called the Thomas Write Rule.

3. Otherwise, T writes O and WTS(O) is set to TS(T).

 Thomas’s Write Rule: As roll back restart doesn’t occur in the time stamp
method, Thomas’s write rule ahs been used.

1. When transaction i wants to write the value of some data item ‘D’ which is

already being read by some younger transaction then it is not possible for
transaction i to write its value hence, it must be aborted, rolled back and
restarted with a new time stamp value.

2. When a transaction i wants to write a new value to some data item ‘D’ on

which the write operation has already been applied by some younger
transaction then the write operation requested by the transaction i is
neglected and is allowed to proceed with its normal execution.

3. Whereas in other operations a transaction; is permitted to continue with its

execution and its write time stamp is changed along with the change in
transactional time stamp.

• Thus, by using Thomas’s write rule it would be possible to obtain both
serializable and recoverable schedules.

• The time stamp protocol just presented above, permits schedules that are not

recoverable, as illustrated in the following figure:

• If TS(T1) = and TS(T2)=2, this schedule is permitted by the time stamp protocol
(with or without the Thomas write Rule). This timestamp protocol can be
modified to disallow such schedules by buffering all write actions until the
transaction commits.

• In the above example, when T1 wants to write A, WTS(A) is updated to reflect

this action, but the change to A is not carried out immediately; instead, it is
recorded in a private workspace, or buffer. When T2 wants to read A, then its
timestamp is compared with WTS (A), and the read is seen to be permissible.
However, T2 is blocked until T1 completes. If T1 commits, its change to A is

 Data Base Management Systems
1

copies from the buffer; otherwise, the changes in the buffer are discarded. T2 is
then allowed to read A.

• This blocking of T2 is similar to the effect of T1 obtaining an exclusive lock on A.

With this modification, the timestamp protocol permits some schedules which are
not permitted by 2PL at all.

• As recoverability is essential, such a modification must be used for the timestamp

protocol.

 Multiversion concurrency control

• Multiversion concurrency control protocol represents another way of using
timestamps, assigned at startup time, to achieve serializability. The goal of this
protocol is to ensure that a transaction never has to wait to read a database object
and the idea to maintain several versions of each database object with a write
timestamp and let transaction Ti read the most recent version whose timestamp
precedes TS (Ti).

• If transaction Ti wants to write an object, we must ensure that the object has not
already been read by some other transaction Tj such that TS(Ti)<TS(Tj). If we
allow Ti to write such an object, its change should be seen by Tj for serializability,
but Tj which read the object at sometime in the past, will not see Ti’s change.

• This condition can be checked, byu associating read timestamp with every object
and whenever a transaction reads the object, the read timestamp is set to the
maximum of the current read is aborted and restarted with a new, larger
timestamp. Otherwise, Ti creates a new version of O and sets the read and write
timestamps of the new version to TS(Ti).

• The drawbacks of this scheme are same, as timestamp concurrency control and in
addition, there is the cost of maintaining versions. On the other hand, reads are
never blocked, which can be important for workloads dominated by transaction
that only read values from the database.

6.8 Introduction to crash recovery

• A computer system, like any other mechanical or electrical device, is subject to
failure. There are many causes of such failure, such as disk crash, power failure,
software error, etc. In each of these cases, information may be lost. Therefore, the
database system maintains an integral part known as recovery manager, which is
responsible for the restorage of the database to a consistent state that existed prior
to the occurrence of the failures.

• The recovery manager of a DBMS is responsible for ensuring transaction
atomicity and durability. It ensures atomicity by undoing the action of
transactions, that do not commit, and durability by making sure that all actions of

 Data Base Management Systems
1

committed transactions survive system crashes (example: the central part of the
system is dumped by an error) and media failure (example: a disk is corrupted).

• When a DBMS is restarted after crashes, the recovery manager is given control
and must bring the database to a consistent state. The recovery manager is also
responsible for undoing the actions of aborted transactions.

 System/transaction failures

• There are two types of errors that may cause a transaction failure:

1. Logical Error: The transaction can no longer continue with its normal
execution with some internal conditions such as bad input, data not found,
overflow or resource limits exceeded.

2. System Error: The system has entered an undesirable state (example:
deadlock), as a result of which a transaction cannot continue with its
normal execution. This transaction can be re-executed at a later time.

3. System Crash: there is a hardware failure or an error in the database
software or the operating system, the causes the loss of the content of
temporary storage and brings transaction processing to a halt. The content
of permanent storage remains same and is not corrupted.

4. Disk Failure: A disk block loses its content as result of either a head crash
or failure brings a data transfer operating. Copies of the data on other
disks, or backups on tapes, are used to recover from the failure.

 Arises recovery algorithm

• ARIES stands for “Algorithm for recovery and isolation exploiting semantics”.
ARIES is a recovery algorithm designed to work with a steal, no-force approach.

• If a steal policy is in effect, the change made to an object in the buffer pool by a
transaction can be written to disk before the transaction commits. This might be
because some other transaction might “steal” the buffer page presently occupied
by an uncommitted transaction.

• If no-force policy is in effect, when a transaction commits, we need not ensure
that all the changes it has made to objects in the buffer pool are immediately
forced to disk.

• ARIES has been implemented (“to varying degrees”) in several commercial and
experimental systems including in particular DB2.

• When the recovery manager is invoked after a crash, restart proceeds in three
phases:
1. Analysis: the analysis phase identified dirty pages (i.e., pages that contain

changes that have not been written to disk) in the buffer pool and active
transactions at the time of the crash.

2. Redo: The redo phase repeats all actions, starting from an appropriate point in
the log (log is a history of actions executed by the DBMS) and restores the
database state to what it was at the time of crash.

 Data Base Management Systems
1

3. Undo: the undo phase undoes the actions of transactions that did not commit,
so that the database does only the actions of committed transactions.

• Three main principles lie behind the ARIES recovery algorithm as follows:

a) Write-Ahead Logging: Any change to a database object is first recode din the
log; the record in the log must be written to stable storage before the change to
the database object is written to disk.

b) Repeating History during read: On restart following a crash, ARIES retraces

all actions of the DBMS before the crash and brings the system back to the
exact state that it was in at the time of the crash. Then, it undoes the actions of
transactions still active at the time of the crash.

c) Logging changes during Undo: changes made to the database while undoing a
transaction are logged to ensure such an action is not repeated in the event of
repeated (failures causing) restarts.

• The second principle distinguished ARIES from other recovery algorithms and is
the basis for much of its simplicity. Therefore, ARIES can support concurrency
control protocols that involve locks of finer granularity locks (example; record-
level locks) than a page.

• The second and third points are also important in dealing with operations where
redoing and undoing the operation are not exact inverses of each other.

6.9 Log recovery

• The log is a history of actions executed by the DBMS, sometimes also called as
the trail or journal. Physically, the log is a file of records stored in stable storage,
which can tolerate crashed; this can be achieved by maintaining two or more
copies of the log in different locations, so that chance of losing all copies of the
log is negligibly small.

• The log tail is the most recent portion of the log, which is kept in main memory
and is time to time force to store safely. This way, log records and data records
are written to disk on the same pages.

• Each and every log record is given a unique id called the log sequence number
(LSN). As with any record id, we can fetch a log record with one disk access
given the LSN. Moreover, LSN’s should be assigned in increasing order; this
property is required for the ARIES recovery algorithm. If the log is a sequential
file growing indefinitely, the LSN can simply be the address of the first byte of
the log record.

• Thus for recovery purposes, every page in the database contains the LSN of the
most receipt log record that describes a change to this page. This LSN is called
the page LSN.

• A log record is written for each of the following actions:

 Data Base Management Systems
1

(i) Updating a page: After modifying the page, an update type record is
appended to the log tail. The page LSN of the page is then set to the LSN of
the update log record. The page must be pinned in the buffer pool while
these actions are carried out.

(ii) Commit: When a transaction decided to commit, it force-writes a commit
type log record containing the transaction id i.e, the log record is appended
to the log, and the log tail is written to stable storage including the commit
record. The transaction is considered to have committed at the instant, that is
commit log record is written to stable storage.

(iii) Abort: When a transaction is aborted, an abort type log record containing
the transaction id is appended to the log.

(iv) End: when a transaction is aborted or committed, some additional actions
must be taken beyond writing the abort or commit log record. After all these
additional steps are completed, an end type log record containing the
transaction id is appended to the log.

(v) Undoing an update: when a transaction is rolled back (because the
transaction is aborted during crash), its updates are undone. When the
actions described by an update log record is undone, a compensation log
record, or CLR, is written.

• Every log record has certain fields: prevLSN, transID, and type. The set of all log
records for a given transaction is maintained as a linked list going back in time,
using the prevLSN field; this list must be updated whenever a log record is added.
The transID field is the id of the transaction generating the log record, and the
type filed indicates the type of the log record.

 Update Log Records:

• The fields in an update log record are illustrated in the following figure:

• Additional fields for update log record that prevLSN, transID and type are the
page id length, offset, before-image and after –image.

• Where the page ID field is the page id of the modified page; the length in bytes
and the offset of the change are also included. The before-image is the value of
the changed bytes before the change; the after-image is the value after the change.
An update log record that contains the both before-image and after-image can be
sued to redo the change and undo the change. A read-only update log record

 Data Base Management Systems
1

contains just the after – image; similarly an undo-only update log record contains
just the before – image.

 Compensation Log Records (CLR)

• A compensation log record (CLR) is written just before the change recorded in an
update log record U is undone. Such an undo can happen during normal execution
is aborted. A compensation log record C describes the action taken to undo the
actions recorded in the corresponding update log record and is appended to the
log tail just like any other log record. The compensation log record C also
contains a field called undo/next/LSN, which is the LSN of the next log record
that is to be undone for the transaction that wrote update record U; this field in c
is set to the value of prevLSN in U.

• A CLR describes an action that will never be undone, i.e., we never undo undo

actions. The reason is simple. An update log record describes a change may by a
transaction during normal execution and the transaction may be aborted, whereas
a CLR describes an action taken to rollback, a transaction for which the decision
to abort has already been made. Therefore, the transaction must be rolled back,
and the undo action described by the CLR is definitely required. This observation
is very useful because it bounds the amount of space needed for the log during
restart from a crash: The number of CLRs that can be written during Undo is no
more than the m\number of update log records for active transaction at the time of
the crash.

• A CLR may be written to stable storage but the undo action it describes may be
written to disk. When the system crashes again. In this case, the undo action
described in the CLR is reapplied during the Redo phase, just like the actions
described in Update log records. For these reasons, a CLR contains the
information needed to reapply, or redo, the change described but not to reverse it.

 Shadow paging

• An alternative to log-based crash-recovery techniques is shadow paging. Shadow
paging may require fewer disk accesses when compared to the log-based recovery
method.

• The database is partitioned into some number of fixed-length blocks, which are
referred as pages. The term page is borrowed from operating systems, since we
are using a paging scheme for memory management.

• Assume that there are n pages, numbered from 1 to n. (n may be in hundreds or
thousands). Theses pages are not stored in any particular order on disk. But, there
is a way to find the ith page of the database for any given i, by using a page table,
as illustrated in the following figure.

X Y

Database
X' Y'

 Data Base Management Systems
1

X and Y: Shadow copies of data items
 X` and Y`: Current copies of data items

• The page table has n entries-one for each database page. Each entry contains a
pointer to page on disk. The first entry contains a pointer to the first page of the
database, the second entry may contain a pointer to the second page, and so on.

• The key idea behind the shadow-paging technique is to maintain two page tables
during the life of a transaction: the current page table and the shadow page table,
as illustrated in the following figure:

• When a transaction starts, both pages are identical. The shadow page table is
never changed over the duration of the transaction. The current page table may be
changed when a transaction performs a write operation. Thus, all input and output
operations use the current page table to locate the database pages on disk.

 Drawbacks of shadow –paging

1. Commit overhead: the commit of a single transaction using shadow paging
requires multiple blocks to the output-the actual data blocks, the current page
table, and the disk address of the current page table.

2. Data fragmentation: we consider strategies to ensure locality-that is, to keep
related database pages close physically on the disk. Because, locality allows
for faster data transfer. But, shadow paging causes database pages to change
location when they are updated.

3. Garbage collection: Each time that a transaction commits, the database pages
containing the old version of data changed by the transaction become
inaccessible. Such pages are considered garbage, since they are not a part of
free space and do not contain usable information. Garbage may be created
also as a side effect of crashed. Periodically, it is necessary to find all the
garbage pages and add them to the list of free pages. This process is called
garbage collection.

• In addition to the drawbacks of shadow paging, even shadow paging is more
difficult than logging to adapt to systems that allow several transactions to
execute concurrently.

6.10 Transaction table recovery

Page 5 (old)
Page 1
Page 4
Page 2 (old)
Page 3
Page 6
Page 2 (new)
Page 5 (new)

1
2
3
4
5
6

Current Directory
(after updating pages 2, 5)

Shadow Directory
(not updated)

1
2
3
4
5
6

 Data Base Management Systems
1

• This table contains one entry for each active transaction. The entry contains the
transaction id, the status, and a field called last LSN, which is the LSN of the
most recent log record for this transaction. The status of a transaction can be that
which is in progress or committed or aborted.

• During normal operation, this table is maintained by the transaction manger and
during restart after a crash; this table is reconstructed in the Analysis phase of
restart.

6.11 Dirty page table recovery

• This table contains one entry for each dirty page in the buffer pool, i.e., each page
with changes not yet reflected on disk. The entry contains a field rec LSN, which
is the LSN of the first log record that caused the page to become dirty. Thus, this
LSN identifies the earliest log record that might have to be redone for this page
during restart from a crash.

• During normal execution, this table is maintained by the buffer manager and
during restart after a crash; this table is reconstructed in the Analysis phase of
restart.

6.12 The write-ahead log(WAL) Protocol

• Transaction can be interrupted before running to completion for a variety of
reasons. A DBMS must ensure that the changes made by such incomplete
transaction are removed form the database. To do son, the DBMS maintains a log
of all units to the database. A crucial property of the log is each write action
change must be recorded first in the database and then the change is recorded in
the log. But, if the system crashed between this order of changes, i.e., if the
system crashes just after making the change in the database but before making the
change in the log, then the DBMS would be unable to detect this new change and
undo this new change. This property is called as Write-Ahead Log or WAL.

6.13 CHECKPOINTING

• A checkpoint is like a small idea of the DBMS state and by taking checkpoints
periodically, the DBMS can reduce the amount of work to be done during restart
in the event of a crash.

• Checkpointing in ARIES has three steps:

1. First, a begin-checkpoint record is written to indicate when the checkpoint starts.
2. Second, an end-checkpoint record is constructed, including in it the current

contents of the transaction table and the dirty page table, and appended to the log.
3. Third step is carried out after the end-checkpoint record is written to stable

storage: A special master record containing the LSN of the begin-checkpoint log
record is written to a known place on stable storage.

• While the end-checkpoint record is being constructed, the DBMS continues
executing transactions and writing other log records; the only guarantee we have,

 Data Base Management Systems
1

is that the transaction table and dirty page table are accurate as the time of the
begin-checkpoint record. This kind of checkpoint, is called as fuzzy checkpoint,
which is inexpensive because it does not require writing out pages in the buffer
pool. The effectiveness of this checkpointing technique is limited by the earliest
rec, LSN of pages in the dirty pages table, because during restart we must redo
changes starting from the log record whose LSN is equal to this rec LSN. Having
a background process that periodically writes dirty pages to disk, helps to limit
this problem’

• Thus, when the system comes back after a crash, the restart process begins the
normal execution by taking a checkpoint, in which the transaction table and dirty
page table both are empty.

6.14 Recovering from a System Crash

• When the system is restarted after a crash, the recovery manager proceeds in three
phases, as illustrated in the following figure:

• The Analysis phase begins by examining the most recent begin-checkpoint
record, whose LSN is denoted as C in above figure, and proceeds forward in the
log until the last log record.

• The Redo phase follows Analysis and redoes all changes to any page that might
have been dirty at the time of the crash; this set of pages and the starting point for
Redo (the smallest rec LSN of any dirty page) are determined during Analysis.

• The Undo phase follows Redo and undoes the changes of all transactions that
were active at the time of the crash; again, this set of transactions is identified
during the Analysis phase.

• Remember that Redo reapplies changes in the order in which they were originally
carried out; whereas Undo reverses changes in the opposite order, reversing the
most recent change first.

 Analysis phase

• The Analysis phase performs three tasks:
1. It determines the pointy in the log at which it starts the Redo phase.
2. It determines pages in the buffer pool that were dirty at the time of the crash.
3. It identifies transactions that were active at the time of the crash and must be

undone.

 Data Base Management Systems
1

• Analysis phase begins by examining the most recent begin checkpoint log record
and initializing the dirty page table and transaction table to the copies of those
structures in the next end-checkpoint record. Thus, these tables are initialized to
the set of dirty pages and active transactions at the time of the checkpoint.

• Analysis phase then scans the log in the forward direction until it reaches the end
of the log as follows:

(a) If an end log record for a transaction T is encountered, T is removed form

the transaction table because it is no longer active.
(b) If a log record other than an end record for a transaction T is encountered,

an entry for T is added to the transaction table if it is not already there.
Further, the entry for T is modified:

1. The last LSN field is set to the LSN of this log record.
2. If the log record is a commit record, the status is set to C, otherwise it is set

to u (indicating that it is to be undone).

(c) If a redoable log record affecting page ‘P’ is encountered, and ‘P’ is not in
the dirty page table, an entry is inserted into this table with page id P and rec
LSN equal to the LSN of this redoable log record. This LSN identifies the
oldest change affecting page P that may not have been written to disk.

• Thus, at the end of the Analysis Phase, the transaction table contains an accurate
list of all transaction that were active at the time of the crash, this is the set of
transactions with status U. the dirty page table includes all pages that were dirty at
the time of the crash, but may also contain some pages that were written to disk. If
an end-write log records were written at the completion of each write operation,
the dirty page table constructed during Analysis could be made more accurate, but
in ARIES, the additional cost of writing end-write log records is not considered to
be worth the gain.

 Redo Phase

• During the redo Phase, ARIES reapplies the updates of all transactions,
committed or uncommitted. Further, if a transaction was aborted before the crash,
and its updated were undone, as indicated by CLRs, the actions describes in the
CLRs are also reapplied. This repeating history paradigm distinguishes ARIES
from other proposed WAL-based recovery algorithms and causes the database to
be brought to the same state that it was in at the time of the crash.

• The Redo Phase begins with the log record that has the smallest rec LSN of all
pages in the dirty page table constructed by the Analysis Phase, because this log
record identifies the oldest update that may not have been written to disk prior to
the crash. Starting from this log record. Redo scans forward until the end of the
log. For each readable log record (update or CLR) encountered, Redo checks
whether the logged actions must be redone.

• The actions must be redone, unless one of the following conditions holds:

 Data Base Management Systems
1

o The affected page is not in the dirty page table. (OR)
o the affected page is in the dirty page table, but the rec LSN for the entry is

greater than the LSN of the log record being checked. (OR)

o the page LSN is greater than or equal to the LSN of the log record being
checked.

 The first condition obviously means that all changes to this page

have been written to
 disk, because the rec LSN is the first update to this page that may

not have been written to disk.
 The second condition means that the update being checked was

propagated to disk.
 The third condition, which is checked last be cause it requires us to

retrieve the page, also ensures that the update being checked was
written to disk, because either this update or a later update to the
page was written.

 If the logged action must be redone:
(i) The logged action is reapplied.
(ii) The page LSN on the page is set to the LSN of the redone log

record. No additional log record is written at this time.

 Undo Phase

• The undo phase scans backward from the end of the log. The goal of this phase is
to undo the actions of all transactions that were active at the time of the crash, i.e.,
effectively abort them. This set of transactions is identified in the transaction table
constructed by the Analysis Phases.

 The Undo Algorithm

• Undo begins with the transaction table constructed by the analysis Phase, which
identifies all transactions that were active at the time of crash, and includes the
LSN of the most recent log record (the last LSN field) for each such transaction.
Such transactions are called Loser Transactions.

• Thus all actions of losers must be undone, and further, these actions must be
undone in the reverse order in which they appear in the log.

• Consider the set of last LSN values for all loser transactions. Let us call this set
To Undo. Undo repeatedly chooses the largest (i.e., most recent) LSN value in
this set and processes it, until ToUndo is empty.

• To proceed a log record:

1. If it is a CLR, and the undo Next LSN value is not null, the undo Next LSN is added
to the set ToUndo; if the undoNextLSN is null, an end record is written for the
transaction because it is completely undone, and the CLR is discarded.

 Data Base Management Systems
1

2. If it is an update record, a CLR is written and the corresponding action is undone and
the prev LSN value in the update log record is added to the set ToUndo.

• When the set ToUndo is empty the Undo Phase is complete. Restart is now
complete, and the system can proceed with normal operations.

