UNIT-4 >>CURRENT MIRROR AND OP-AMP DESIGN

SUBJECT-ANALOG CIRCUITS

PAPER CODE-402

LECTURE-NO>>3

TOPIC>> OUTPUT RESISTANCE

FACULTY NAME>>DR.NIDHI CHAUHAN

OUTPUT RESISTANCE OF THE CURRENT MIRROR

1- $I_O = I_C$, the current transfer ratio can be found as

$$I_{o}/I_{REF} = I_{C}/I_{C}(1+2/\beta)$$
 (1)

As β approaches ∞ , $I_{o/I_{REF}}$ approaches the nominal value of unity.

- 2- For typical value of β , however, the error in the current transfer ratio can be significant.
- 3- For instance, β = 100 results in a 2% error in the current transfer ratio.
- 4- The BJT mirror has a finite output resistance r_{0} ,

$$R_0 = \Delta V_0 / \Delta I_0 = r_{02} = -V_{A2}/I_0$$

Where V_{A2} and r_{o2} are the Early voltage and the output resistance, respectively, of Q_2 .

5- Taking both the finite β and finite R_o into account, we can express the output current of a BJT mirror with a nominal current transfer ratio m as

$$I_{O} = I_{REF}(m/1+m+1+\beta) (1+V_{o}-V_{BE})$$