

VHDL Data Types

VHDL Data Types

● What is a “Data Type”?

● This is a classification objects/items/data that defines the
possible set of values which the objects/items/data belonging
to that type may assume.

● E.g. (VHDL) integer, bit, std_logic, std_logic_vector

● Other languages (float, double, int , char etc)

VHDL Data Types

● Predefined Data Types

● Specified through the IEEE 1076 and IEEE 1164 standards

● The IEEE Standard 1076 defines the VHSIC Hardware
Description Language or VHDL
– Developed by Intermetrics, IBM and Texas Instruments for

United States Air Force.
– 1076-1987 was the first version
– Revised in 1993, 2000, 2002, and 2008

VHDL Data Types

VHDL Data Types

● Package standard of library std (Included by default):

● bit type (0, 1)
● bit vectors (group of multi-bit signal → bus)

● Example
– SIGNAL x: BIT;
– SIGNAL y: BIT_VECTOR (3 DOWNTO 0);
– SIGNAL w: BIT_VECTOR (0 TO 7);
–

● Signal assignment operator <=
– x <= '1';
– y <= "0111";
– w <= "01110001";

VHDL Data Types

● Package standard of library std (Included by default):
● BOOLEAN (TRUE, FALSE)

– Example
● variable VAR1: boolean := FALSE;

● INTEGER (32 bit, -2,147,483,647 to +2,147,483,647
– Example

● SIGNAL SUM: integer range 0 to 256 :=16;

● REAL (from -1.0E38 to +1.0E38)
– Example

● constant Pi : real := 3.14159;

● The IEEE Standard 1164
● Introduce Multivalue Logic (std_logic_1164) Packages
● The primary data type std_ulogic (standard unresolved logic)

consists of nine character literals in the following order:

● std_ulogic and its subtype (std_logic, std_logic_vector,
std_ulogic_vector) values can be categorized in terms of their
state and strength (forcing, weak and high impedance.)

● Weak strength is used for multi-driver inputs catering for
pullup/pulldown

1. 'U' – uninitialized (default value)

2. 'X' - strong drive, unknown logic
value

3. '0' - strong drive, logic zero

4. '1' - strong drive, logic one

5. 'Z' - high impedance (for tri-state
logic)

6. 'W' - weak drive, unknown logic value

7. 'L' - weak drive, logic zero

8. 'H' - weak drive, logic one

9. '-' - don't care

VHDL Data Types

VHDL Data Types

● std_ulogic data type possible values and corresponding strength

Data Value State Strength Comment

U Unitialised None Default value before simulation.

X Unknown Forcing Represents driven signals whose
value cannot be determined as 1 or 0

0 0 Forcing Represents signals from active output
drivers1 1 Forcing

Z None High Impedance Represents output of tri-state buffer
when not enabled.

W Unknown Weak Represents signals from resistive
drivers e.g. pull-up and pull-down
resistors

L 0 Weak

H 1 Weak

- Don't care None Allows synthesiser to decide whether
to assign a 0 or a 1 for minimum
systhesised logic circuit.

● std_ulogic
● Is an unresolved data type

● Declared in package STD_LOGIC_1164 of library IEEE.

● All data signals are of unresolved type by default.

● Unresolved data type signals cannot be driven by more
than one driver/sources. (adding multiples sources will
result in compiler error).

● Helps checking that designer has not accidentally
assigned two sources to a signal.

VHDL Data Types

● Resolved Data Types
● Always declared with a resolution function (within its library).

● Resolution function defines all possible combinations of one
or more source values and the correspond resolved value
(result).

VHDL Data Types

● std_logic (this is a resolved data type)
● A subtype of std_ulogic
● Declared in package STD_LOGIC_1164 of library IEEE as

 subtype std_logic is resolved std_ulogic;
● Specified a resolution function called “resolved”

VHDL Data Types

VHDL Data Types

● std_logic resolution table

X 0 1 Z W L H -

X X X X X X X X X

0 X 0 X 0 0 0 0 X

1 X X 1 1 1 1 1 X

Z X 0 1 Z W L H X

W X 0 1 W W W W X

L X 0 1 L W L W X

H X 0 1 H W W H X

- X X X X X X X X

● std_logic declaration examples

● SIGNAL x: STD_LOGIC;

● SIGNAL y: STD_LOGIC_VECTOR (3 DOWNTO 0) := "0001";

VHDL Data Types

VHDL Data Types: Arrays

● Arrays are collections of objects of the same type.
● Can be 1D (1 dimensional) of 2D (2 dimensional) arrays.
● Higher dimensional arrays are not synthesizable

● There are no pre-defined 2D or 1Dx1D arrays; have to be
defined by designer.

Scalar 1D Array 1Dx1D array
(Array of vectors)

2D array

VHDL Data Types: Arrays

● Defining VHDL Arrays

● First define a new data type

● Second declare a signal, variable or constant of the defined

data type.

● General Format of Array definition

TYPE type_name IS ARRAY (specification) OF data_type;

SIGNAL signal_name: type_name [:= initial_value];

VHDL Data Types: Arrays

● Example:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

– Defines a row (1D array) (data type) with of seven STD_LOGIC

values with MSB on left.

TYPE matrix IS ARRAY (0 TO 3) OF row;

– Defines an 1Dx1D ARRAY (matrix) data type containing 4 row

defined in previous line.

SIGNAL x: matrix;

– Defines 1Dx1D signal of type matrix as defined in previous line

VHDL Data Types: Arrays

● Example:1Dx1D Array (of vectors) --- Alternative method

TYPE matrix IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

● Example:2D Array Data type

TYPE matrix2D IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

– Array construction is not based on vectors, but rather entirely

on scalars.

– It is a 2 dimensional array of scalars

VHDL Data Types: Array Assignments

● Type Definition:

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC; -- 1D array
TYPE array1 IS ARRAY (0 TO 3) OF row; -- 1Dx1D array

● Signal Declaration;

SIGNAL x: row;
SIGNAL y: array1;

● Scalar Signal (array) assignment:

x(0) <= y(1)(2);

● Note the two pairs of parentheses since y is a 1Dx1D array.

VHDL Data Types: Array Assignments

● Type Definition:
TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

 -- 1Dx1D

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;
 -- 2D array

● Signal Declarations:
SIGNAL v: array2;
SIGNAL w: array3;

● Scalar Signal Assignments:
x(1) <= v(2)(3);
x(2) <= w(2,1);

● Single pair of parentheses since w is 2D array

VHDL Data Types: Array Assignments

TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

TYPE array1 IS ARRAY (0 TO 3) OF row;

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

● Signal Declaration;

SIGNAL x: row;
SIGNAL y: array1;
SIGNAL v: array2;
SIGNAL w: array3;

●Scalar Signal Assignments:

y(1)(1) <= x(6);

y(2)(0) <= v(0)(0);

y(0)(0) <= w(3,3);

w(1,1) <= x(7);

w(3,0) <= v(0)(3);

VHDL Data Types: Array Assignments

● Vector Signal Assignments
TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

TYPE array1 IS ARRAY (0 TO 3) OF row;

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

● Signal Declaration;

SIGNAL x: row;
SIGNAL y: array1;
SIGNAL v: array2;
SIGNAL w: array3;

● Legal Assignments
x <= y(0);
y(1)(7 DOWNTO 3) <= x(4 DOWNTO 0);
v(1)(7 DOWNTO 3) <= v(2)(4 DOWNTO 0);

VHDL Data Types: Array Assignments

● Vector Signal Assignments
TYPE row IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;

TYPE array1 IS ARRAY (0 TO 3) OF row;

TYPE array2 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(7 DOWNTO 0);

TYPE array3 IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD_LOGIC;

● Signal Declaration;

SIGNAL x: row;
SIGNAL y: array1;
SIGNAL v: array2;
SIGNAL w: array3;

● Why are the following assignments illegal ?
x <= v(1);
x <= w(2);
x <= w(2, 2 DOWNTO 0);
v(0) <= w(2, 2 DOWNTO 0);
v(0) <= w(2);
y(1) <= v(3);
w(1, 5 DOWNTO 1) <= v(2)(4 DOWNTO 0);

VHDL OPERATORS

● Logical operators

VHDL OPERATORS

● Arithmetic operators

VHDL OPERATORS

● Relational operators

VHDL Reserved Words
● Reserved words cannot be used by designers for identifiers

such as variables, signal names, etc.

Data Types:
Advanced Topics

● Package std_logic_arith of library IEEE:
● Defines SIGNED and UNSIGNED data types, plus several

data conversion functions, like:
– conv_integer(p),
– conv_unsigned(p, b),
– conv_signed(p, b), and
– conv_std_logic_vector(p, b).

● Allow arithmetic operations
● Data conversion to be discussed in later slides

VHDL Data Types

● Packages std_logic_signed and std_logic_unsigned of library IEEE:

● Contain functions that allow operations with
STD_LOGIC_VECTOR data to be performed as if the data were
of type SIGNED or UNSIGNED, respectively.

VHDL Data Types

User Defined VHDL Data Types

● User Defined Integer Data Types
● Subtype of Integer
● Examples

– TYPE integer IS RANGE -2147483647 TO +2147483647;

– TYPE my_integer IS RANGE -32 TO 32;

– -- A user-defined subset of integers.
– TYPE student_grade IS RANGE 0 TO 100;

– -- A user-defined subset of integers or naturals.
– TYPE natural IS RANGE 0 TO +2147483647;

● User Defined ENUMERATED Data Types
● Data type consisting of a set of named values.
● Examples

– TYPE bit IS ('0', '1');

– TYPE my_logic IS ('0', '1', 'Z');
– This is the pre-defined type BIT

– TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;
-- This is the pre-defined type BIT_VECTOR.
NATURAL RANGE <>, on the other hand, indicates that the
only restriction is that the range must fall within the
NATURAL range.

User Defined VHDL Data Types

● User Defined ENUMERATED Data Types
● More Examples

– TYPE state IS (idle, forward, backward, stop);
-- An enumerated data type, typical of finite state machines.

● Two bits will be used to encode this data type values.
● Idle will be the default value

– TYPE color IS (red, green, blue, white, black);
-- Another enumerated data type.

● Three bits will be used for encoding this data type.
● Red will be the default value

User Defined VHDL Data Types

VHDL Data Types:Records

● Like Arrays Arrays records are collections of objects.
● Unlike arrays records can contain objects of different data types.
● Example

TYPE birthday IS RECORD
day: INTEGER RANGE 1 TO 31;
month: month_name; – month_name datatype should be pre-
defined

END RECORD;

VHDL Data Types:
Signed and Unsigned Types

● Defined in the STD_LOGIC_ARITH package of the IEEE library
● For arithmetic operations.
● Signal Declaration Examples

SIGNAL x: SIGNED (7 DOWNTO 0);
SIGNAL y: UNSIGNED (0 TO 3);

● Syntax is similar to that of STD_LOGIC_VECTOR not like integers
● An UNSIGNED value is a number never lower than zero.

For example,
– Unsigned ‘‘0101’’ = the decimal 5
– Unsigned ‘‘1101’’ signifies 13.
– Signed ‘‘0101’’ = the decimal 5
– Signed ‘‘1101’’ signifies -3 (Two's complement)

VHDL Data Types:
Signed and Unsigned Types

● Operations Example

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
….........
SIGNAL a: IN SIGNED (7 DOWNTO 0);
SIGNAL b: IN SIGNED (7 DOWNTO 0);
SIGNAL x: OUT SIGNED (7 DOWNTO 0);
SIGNAL u: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL v: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
…........
x <= a + b; - -legal
x = a AND b; - - illegal
y = a + b; - - illegal
y = a AND b; - - legal

VHDL Data Types:
Signed and Unsigned Types

● std_logic_signed and std_logic_unsigned packages allows both logical
and arithmetic operations

● Example:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
...
SIGNAL a: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
...
v <= a+ b; -- legal
w <= a AND b; -- legal

● Direct operation between different data types is illegal in VHDL
● Solution!!!! = Data conversion
● Examples:

TYPE long IS INTEGER RANGE -100 TO 100;
TYPE short IS INTEGER RANGE -10 TO 10;
SIGNAL x : short;
SIGNAL y : long;
...
y <= 2*x + 5; -- error, type mismatch
y <= long(2*x + 5); -- OK, result converted into type long

Type Conversion

● Data conversion defined in STD_LOGIC_ARITH
● conv_integer(p) :

- Converts a parameter p of type INTEGER, UNSIGNED, SIGNED,
 or STD_ULOGIC to an INTEGER value.
- Notice that STD_LOGIC_VECTOR is not included.

● conv_unsigned(p, b):
Converts a parameter p of type INTEGER, UNSIGNED, SIGNED,
or STD_ULOGIC to an UNSIGNED value with size b bits.

● conv_signed(p, b):
Converts a parameter p of type INTEGER, UNSIGNED, SIGNED,
or STD_ULOGIC to a SIGNED value with size b bits.

Type Conversion

Type Conversion

● conv_std_logic_vector(p, b):
● Converts a parameter p of type INTEGER, UN-SIGNED,

SIGNED, or STD_LOGIC to a STD_LOGIC_VECTOR value
with size b bits.

● Example:
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
...
SIGNAL a: IN UNSIGNED (7 DOWNTO 0);
SIGNAL b: IN UNSIGNED (7 DOWNTO 0);
SIGNAL y: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
...
y <= CONV_STD_LOGIC_VECTOR ((a+b), 8);

● a+b is converted from UNSIGNED to an 8-bit
STD_LOGIC_VECTOR value, then assigned to y.

VHDL Data Type:Example

● Four Bit Adder ------ Solution 2: in/out=SIGNED -----------

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
--
ENTITY adder1 IS

PORT (a, b : IN SIGNED (3 DOWNTO 0);
sum : OUT SIGNED (4 DOWNTO 0));

END adder1;
--
ARCHITECTURE adder1 OF adder1 IS

BEGIN
sum <= a + b;

END adder1;

Four Bit Adder------ Solution 2: out=INTEGER -----------

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
--
ENTITY adder2 IS

PORT (a, b : IN SIGNED (3 DOWNTO 0);
sum : OUT INTEGER RANGE -16 TO 15);

END adder2;
--
ARCHITECTURE adder2 OF adder2 IS

BEGIN
sum <= CONV_INTEGER(a + b);

END adder2;

VHDL Data Type:Example

