<u>Lecture – 12 (Dt. 18th April 2020)</u>

<u>Unit-3</u>

Microwave Engineering (EC- 6th Sem)

Klystron & Reflex Klystron

The writer is not responsible for any legal issue arising out of any copyright demands and / or reprint issues contained in this material. This is not meant for any commercial purpose. This is solely meant for personal reference of students during Covid-19 following the syllabus prescribed by the university.

Acknowledgement

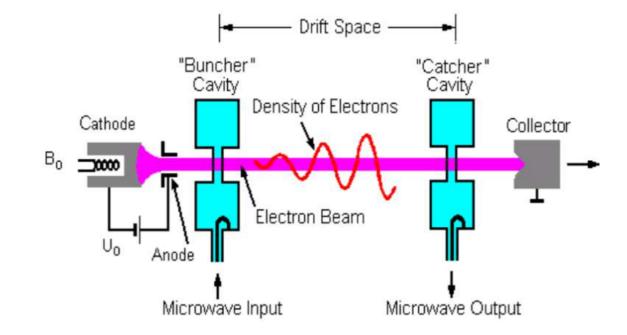
Special thanks to Prof. Dr. V Siva Nagaraju & Prof. Dr. V. Naresh Kumar, Dept. Of ECE, Institute of Aeronautical Engineering, Hyderabad for providing lecture notes.

KLYSTRON

5kW klystron tube used as power amplifier in UHF television transmitter, 1952. When installed, the tube projects through holes in the center of the cavity resonators, with the sides of the cavities making contact with the metal rings on the tube.

A **klystron** is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russel and Sigurd Varian,^[1] which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, and radar transmitters, and to generate the drive power for modern particle accelerators.

In a klystron, an electron beam interacts with radio waves as it passes through resonant cavities, metal boxes along the length of a tube.^[2] The electron beam first passes through a cavity to which the input signal is applied. The energy of the electron beam amplifies the signal, and the amplified signal is taken from a cavity at the other end of the tube. The output signal can be coupled back into the input cavity to make an electronic oscillator to generate radio waves. The gain of klystrons can be high, 60 dB (one million) or more, with output power up to tens of megawatts, but the bandwidth is narrow, usually a few percent although it can be up to 10% in some devices.^[2]


A *reflex klystron* is an obsolete type in which the electron beam was reflected back along its path by a high potential electrode, used as an oscillator.

The name *klystron* comes from the stem form $\kappa\lambda\upsilon\sigma$ - (*klys*) of a Greek verb referring to the action of waves breaking against a shore, and the suffix $-\tau\rho\sigma\nu$ ("tron") meaning the place where the action happens.^[3] The name "klystron" was suggested by Hermann Fränkel, a professor in the classics department at Stanford University when the klystron was under development.^[4]

OPERATION

Klystrons amplify RF signals by converting the kinetic energy in a DC electron beam into radio frequency power. A beam of electrons is produced by a thermionic cathode (a heated pellet of low work function material), and accelerated by high-voltage electrodes (typically in the tens of kilovolts). This beam is then passed through an input cavity resonator. RF energy is fed into the input cavity at, or near, its resonant frequency, creating standing waves, which produce an oscillating voltage which acts on the electron beam. The electric field causes the electrons to "bunch": electrons that pass through when the electric field opposes their motion are slowed, while electrons which pass through when the electric field is in the same direction are accelerated, causing the previously continuous electron beam to form bunches at the input frequency. To reinforce the bunching, a klystron may contain additional "buncher" cavities. The beam then passes through a "drift" tube in which the faster electrons catch up to the slower ones, creating the "bunches", then through a "catcher" cavity. In the output "catcher" cavity, each bunch enters the cavity at the time in the cycle when the electric field opposes the electrons' motion, decelerating them. Thus the kinetic energy of the electrons is converted to potential energy of the field, increasing the amplitude of the oscillations. The oscillations excited in the catcher cavity are coupled out through a coaxial cable or waveguide. The spent electron beam, with reduced energy, is captured by a collector electrode.

To make an oscillator, the output cavity can be coupled to the input cavity(s) with a coaxial cable or waveguide. Positive feedback excites spontaneous oscillations at the resonant frequency of the cavities.

TWO-CAVITY KLYSTRON AMPLIFIER

The simplest klystron tube is the two-cavity klystron. In this tube there are two microwave cavity resonators, the "catcher" and the "buncher". When used as an amplifier, the weak microwave signal to be amplified is applied to the buncher cavity through a coaxial cable or waveguide, and the amplified signal is extracted from the catcher cavity.

At one end of the tube is the hot cathode heated by a filament which produces electrons. The electrons are attracted to and pass through an anode cylinder at a high positive potential; the cathode and anode act as an electron gun to produce a high velocity stream of electrons. An external electromagnet winding creates a longitudinal magnetic field along the beam axis which prevents the beam from spreading.

The beam first passes through the "buncher" cavity resonator, through grids attached to each side. The buncher grids have an oscillating AC potential across them, produced by standing wave oscillations within the cavity, excited by the input signal at the cavity's resonant frequency applied by a coaxial cable or waveguide. The direction of the field between the grids changes twice per cycle of the input signal. Electrons entering when the entrance grid is negative and the exit grid is positive encounter an electric field in the same direction as their motion, and are accelerated by the field. Electrons entering a half-cycle later, when the polarity is opposite, encounter an electric field which opposes their motion, and are decelerated.

Beyond the buncher grids is a space called the *drift space*. This space is long enough so that the accelerated electrons catch up to the retarded electrons, forming "bunches" longitudinally along the beam axis. Its length is chosen to allow maximum bunching at the resonant frequency, and may be several feet long.

Klystron oscillator from 1944. The electron gun is on the right, the collector on the left. The two

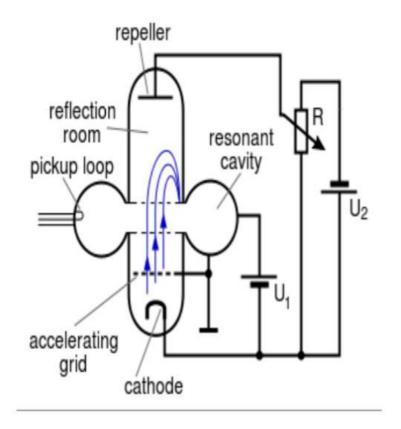
cavity resonators are in center, linked by a short coaxial cable to provide positive feedback.

The electrons then pass through a second cavity, called the "catcher", through a similar pair of grids on each side of the cavity. The function of the *catcher grids* is to absorb energy from the electron beam. The bunches of electrons passing through excite standing waves in the cavity, which has the same resonant frequency as the buncher cavity. Each bunch of electrons passes between the grids at a point in the cycle when the exit grid is negative with respect to the entrance grid, so the electric field in the cavity between the grids opposes the electrons motion. The electrons thus do work on the electric field, and are decelerated, their kinetic energy is converted to electric potential energy, increasing the amplitude of the oscillating electric field in the cavity. Thus the oscillating field in the catcher cavity is an amplified copy of the signal applied to the buncher cavity. The amplified signal is extracted from the catcher cavity through a coaxial cable or waveguide.

After passing through the catcher and giving up its energy, the lower energy electron beam is absorbed by a "collector" electrode, a second anode which is kept at a small positive voltage.

KLYSTRON OSCILLATOR

An electronic oscillator can be made from a klystron tube, by providing a feedback path from output to input by connecting the "catcher" and "buncher" cavities with a coaxial cable or waveguide. When the device is turned on, electronic noise in the cavity is amplified by the tube and fed back from the output catcher to the buncher cavity to be amplified again. Because of the high Q of the cavities, the signal quickly becomes a sine wave at the resonant frequency of the cavities.


MULTICAVITY KLYSTRON

In all modern klystrons, the number of cavities exceeds two. Additional "buncher" cavities added between the first "buncher" and the "catcher" may be used to increase the gain of the klystron, or to increase the bandwidth.

The residual kinetic energy in the electron beam when it hits the collector electrode represents wasted energy, which is dissipated as heat, which must be removed by a cooling system. Some modern klystrons include depressed collectors, which recover energy from the beam before collecting the electrons, increasing efficiency. Multistage depressed collectors enhance the energy recovery by "sorting" the electrons in energy bins.

REFLEX KLYSTRON

Low-power Russian reflex klystron from 1963. The cavity resonator from which the output is taken, is attached to the electrodes labeled *Externer Resonator*. Reflex klystrons are almost obsolete now.

The reflex klystron (also known as a Sutton tube after one of its inventors, Robert Sutton) was a low power klystron tube with a single cavity, which functioned as an oscillator. It was used as a local oscillator in some radar receivers and a modulator in microwave transmitters the 1950s and 60s, but is now obsolete, replaced by semiconductor microwave devices.

In the reflex klystron the electron beam passes through a single resonant cavity. The electrons are fired into one end of the tube by an electron gun. After passing through the resonant cavity they are reflected by a negatively charged reflector electrode for another pass through the cavity, where they are then collected. The electron beam is velocity modulated when it first passes through the cavity. The formation of electron bunches takes place in the drift space between the reflector and the cavity. The voltage on the reflector must be adjusted so that the bunching is at a maximum as the electron beam re-enters the resonant cavity, thus ensuring a maximum of energy is transferred from the electron beam to the RF oscillations in the cavity. The reflector voltage may be varied slightly from the optimum value, which results in some loss of output power, but also in a variation in frequency. This effect is used to good advantage for automatic frequency control in receivers, and in frequency modulation for transmitters. The level of modulation applied for transmission is small enough that the power output essentially remains constant. At regions far from the optimum voltage, no oscillations are obtained at all.

There are often several regions of reflector voltage where the reflex klystron will oscillate; these are referred to as modes. The electronic tuning range of the reflex klystron is usually referred to as the variation in frequency between half power points—the points in the oscillating mode where the power output is half the maximum output in the mode.

Modern semiconductor technology has effectively replaced the reflex klystron in most applications.