
Enzyme Kinetics: Velocity

The velocity (V) of an enzyme-catalyzed reaction is dependent upon the substrate concentration [S]

• A plot of V vs [S]is often hyperbolic Michaelis-Menten plot Graph is not a graph of product formation over time!!!

• An example of how to do a kinetics experiment:

A. Take 9 tubes, add identical amount of enzyme (E) to each tube

B. Each tube contains an increasing amount of substrate (S) starting with zero

C. Measure the velocity by determining the rate of product formation

D. Plot these values - Velocity against substrate concentration

E. Generate the curve shown:

- i. Often the shape is hyperbolic a characteristic of many enzymes shape suggests that the enzyme physically combines with the substrate ES complex
- ii. Called a **SATURATION PLOT or MICHAELIS-MENTEN PLOT** after the two biochemists that first described and explained the curve shape.
- Let's look at the various features of the plot:

Harcourt, Inc. items and derived items copyright @ 2002 by Harcourt, Inc.

- A. As [S] is first increased, the **initial rate or velocity** (V_0) increases with increasing substrate concentration
 - i. V is proportional to [S]
- B. As [S] increases, V increases less and less
 - i. V is NOT proportional to [S] in this range
- C. Finally, V doesn't increase anymore and velocity reaches its maximum (V_{max})
 - i. Enzyme is working as fast as it can
- D. Velocity won't change no matter how much substrate is present. At this point, the enzyme is **saturated** with substrate, **S**.

Two analogies:

1. Toll Plaza (with 5 booths)

- Rate at which cars can get through the booths is not affected by the number of waiting cars, only by the available number of toll attendants.
- 2. Paper Airplane Example

http://www.wellesley.edu/Biology/Concepts/Html/initialvelocity.html

QUANTITATIVE EXPRESSION OF ENZYME BEHAVIOR:

- The Michaelis-Menten equation describes the kinetic behavior of many enzymes
- This equation is based upon the following reaction:

 $S \rightarrow P$

$$\begin{array}{cc} \mathbf{k}_1 & \mathbf{k}_2 \\ \mathbf{E} + \mathbf{S} \longleftrightarrow \mathbf{ES} \longrightarrow \mathbf{E} + \mathbf{F} \\ \mathbf{k}_{-1} \end{array}$$

 k_1 , k_{-1} and k_3 are rate constants for each step

To derive the equation, they made 2 assumptions:

- 1. The reverse reaction $(P \rightarrow S)$ is not considered because the equation describes initial rates when [P] is near zero
- 2. The ES complex is a **STEADY STATE INTERMEDIATE** i.e. the concentration of ES remains relatively constant because it is produced and broken down at the same rate

$$\mathbf{V} = \frac{\mathbf{V}_{\max} [\mathbf{S}]}{\mathbf{K}_{\mathrm{M}} + [\mathbf{S}]}$$

Michaelis-Menten Equation (equation for a hyperbola)

- V is the reaction rate (velocity) at a substrate concentration [S]
- V_{max} is the **maximum rate** that can be observed in the reaction
 - substrate is present in excess
 - enzyme can be **saturated** (zero order reaction)

• K_M is the Michaelis constant

- a constant that is related to the affinity of the enzyme for the substrate
- units are in terms of concentration
- It is a combination of rate constants

$$K_{M} = \underline{k_{2} + k_{-1}} \\ k_{1}$$

Understanding K_m – the Michaelis Constant

- K_M is the Michaelis constant
 - K_M is constant for any given enzyme/substrate pair
 Independent of substrate or enzyme concentration

 K_M

- units are in terms of concentration
 - K_m is a constant derived from rate constants.

- K_m is a measure of ES binding; relative measure of the affinity of a substrate for an enzyme (how well it binds)
 - In the simplest assumption, the rate of ES breakdown to product (k₂) is the rate-determining step of the reaction
- Small K_m means tight binding; large K_m means weak binding.
- Since K_M has the same units as substrate concentration, this implies a relationship between K_M and [S]
- What happens when $K_M = [S]$

$$V = \underline{V}_{max} [\underline{S}] = V = \underline{V}_{max} [\underline{S}] = \underline{V}_{max}$$

[S] + [S] 2[S] 2

• K_M is also the substrate concentration at which the enzyme operates at one half of its maximum velocity

$$\mathbf{K}_{\mathbf{M}} = [\mathbf{S}] \operatorname{at} \frac{1}{2} \mathbf{V}_{\max}$$

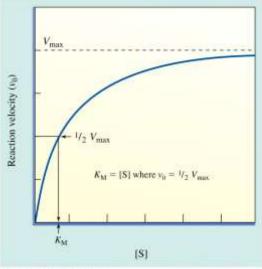
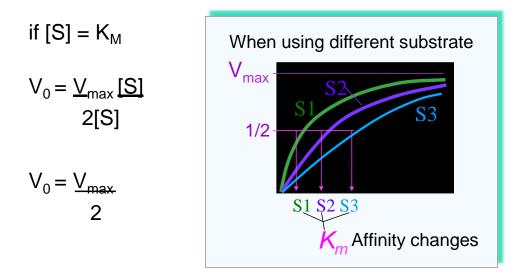



Figure 5-4 Concepts in Biochemistry, 3/e © 2005 John Wiley & Sons

- Indicates how efficiently an enzyme selects its substrate and converts to product.
- So, if an enzyme has a **SMALL** K_M they it achieves maximal catalytic efficiency (V_{max}) at a low substrate concentration!
- $\mathbf{K}_{\mathbf{M}}$ is unique for each enzyme/substrate pair

K_M = substrate concentration [S] when reaction velocity is ½ V_{max}

Higher K_M = lower the affinity = higher [S] required to reach $\frac{1}{2} V_{max}$

- For certain enzymes under certain conditions, K_M can also be a measure of affinity between E and S approximates the dissociation constant of the ES complex
 - If K_M is LOW (small number) =
 Substrate is held tightly (HIGH affinity)
 - 1. Reaches V_{max} at a lower [S]
 - 2. Small number means less than 10⁻³M
 - If K_M is HIGH (large number) = Substrate is held weakly (LOW affinity)
 - 1. Reaches V_{max} at a higher [S]
 - **2.** Large number means $10^{-1} 10^{-3}$ M

Enzyme	Substrate	K_m (mM)
Carbonic anhydrase	CO2	12
Hexokinase	Glucose	0.15
	Fructose	1.5
B-Galactosidase	Lactose	4
Glutamate dehydrogenase	NH ₄ ⁺	57
	Glutamate	0.12
	Generate Generate	2
	NAD ⁺	0.025
	NADH	0.018
Aspartate aminotransferase	Aspartate	0.9
	α-Ketoglutarate	0.1
	Oxaloacetate	0.04
	Glutamate	4
Threonine deaminase	Threonine	4 5
Pyruvate carboxylase	HCO ₂ T	1.0
	Pyruvate	0.4
	ATP	0.06
Penicillinase	Benzylpenicillin	0.05
Lysozyme	Hexa-N-acetylglucosamine	0.006

TURNOVER NUMBER (kcat) - CATALYTIC CONSTANT

- How fast ES complex proceeds to E + P
- Number of catalytic cycles that each active site undergoes per unit time
- Rate constant of the reaction when enzyme is saturated with substrate
- First order rate constant (sec⁻¹)

turnover number = $k_{cat} = V_{max}/[E_T]$

 $[E_T] = total enzyme concentration$

k_{cat}/K_{M} = catalytic efficiency

- Reflects both binding and catalytic events indicates how the velocity varies according to how often the enzyme and substrate combine.
- Best value to represent the enzyme's overall ability to convert substrate to product
- Upper limit is diffusion controlled $-10^8 10^9 \text{ M}^{-1}\text{s}^{-1}$ maximum rate at which two freely diffusion molecules can collide with each other in aqueous solution (E and S)

LINEAR TRANSFORMATION OF THE MICHAELIS – MENTEN EQUATION:

The Michaelis-Menten curve can be used to ESTIMATE V_{max} and K_M – although not exacting and we don't use it. Determine the values by a different version of the equation.

In 1934, Lineweaver and Burk devised a way to transform the hyperbolic plot into a linear plot.

- Actual values for K_M and V_{max} can then be easily determined from the graph.
- How can we do this:

We take the reciprocal of both sides of the Michaelis-Menten Equation:

