LIFE CYCLE OF Hymenolepis

CONTENTS

1. Introduction
2. Classification
3. Distribution
4. Habitat
5. Food Habits
6. Morphology
7. Life Cycle
8. Reproduction
9. Behaviour
10. Communication and Perception
11. Ecosystem Role
12. Hymenolepis
 a. Symptoms
 b. Diagnosis
 c. Treatment
 d. Prevention
13. Case Report
Introduction

The generic name is derived from the membranous character of the egg shell (from G. hymen, membrane; lepis, mind or shell). The characteristics of the genus Hymenolepis are as follows:

There are three tests in each mature segment.

The uterus is sac-like and transverse.

The individual segment is greater in breadth than in length.

The egg possesses two membranes:

The outer one (egg shell) is thin and transparent.

The larval stage is cysticercoid.

Hymenolepis diminuta, also known as rat tapeworms, is a species of Hymenolepis tapeworm that causes Hymenolepiasis. It has slightly bigger eggs and proglottids than H. nana and infects mammals using insects as intermediate hosts.

The adult structure is 20 to 60 cm long and the mature proglottid is similar to that of H. nana except it is large.
Classification

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Animalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
<td>Platyhelminthes</td>
</tr>
<tr>
<td>Class</td>
<td>Cestoda</td>
</tr>
<tr>
<td>Order</td>
<td>Cyclophyllidea</td>
</tr>
<tr>
<td>Family</td>
<td>Hymenolepididae</td>
</tr>
<tr>
<td>Genus</td>
<td>Hymenolepis</td>
</tr>
<tr>
<td>Species</td>
<td>diminuta</td>
</tr>
</tbody>
</table>

Hymenolepis diminuta (Rudolphi, 1819)

Distribution

Hymenolepis diminuta has been reported from various areas of the world. But only a few hundred human cases have been reported. Few cases have been reported in Australia, United States, Spain, and Italy. In countries like Malaysia, Thailand, Jamaica, Indonesia, the prevalence is higher.
HABITAT

The adult worm lives in the intestine of its host, normally rats but also sometimes dogs and humans. *Hymenolepis diminuta* passes through the required intermediate arthropod host as juvenile. Only when the intermediate host is injected by the definitive host will *H. diminuta* mature. The intermediate arthropod host is normally a grain beetle, and injection of the intermediate host into the definitive host normally occurs in piles of grain, where both rats and beetles live.

Habitat regions: temperate, tropical.

Terrestrial biomes: desert or dune; savanna or grassland; chaparral; forest; rainforest; scrub forest; mountains.

Other habitat features: urban, sub-urban, agricultural.
FOOD HABITS

Hymenolepis diminuta has no digestive tract, all nutrients needed must be absorbed by the tegument, which is the external covering of the cestode. The cestode is covered in tiny posteriorly directed microtriches which increase the absorptive area of the tegument. The glycocalyx found on the surface membrane of the microtriches is a layer of carbohydrate-containing macromolecules. Interaction between the glycocalyx and certain molecules has been reported to enhance amylase activity in *H. diminuta*, inhibit the host trypsin, chymotrypsin and pancreatic lipase and increase the absorption of cations and absorption of bile salts.

Primary diet: Carnivore (eats body fluids)

Animal food: Body fluids.
Hymenolepis diminuta
cysticercoids

(by F.M. Pappas and S.M. Wardrop)

Figure D: Proglottids of *H. diminuta* stained with carmine. Notice the ciliated form of the proglottids.
MORPHOLOGY

Adult *Hymenolepis diminuta* reach 20 to 60 cm, and up to 90 cm. The cestode has a long cylindrical body. The unarmed “head” has four suckers and an apical organ at its sucker, with no restellar hooks. The proglottids number about 800 to 1000. The mature proglottids are much broader than long (2.5 mm by 0.75 mm).

Hymenolepis diminuta, along with all cestodes, lacks any trace of a digestive tract, and it absorbs all required substances through its external covering. Posteriorly directed microtubules cover the cestode’s tegument, which add to the surface area of the animal and thus to the amount of nutrients it can absorb.

Hymenolepis diminuta has three body sections:
1. Scolex (head)
2. Neck
3. Strobilus

The strobilus is divided into many sections called proglottids, each with male and female sexual organs. These are the defining characteristics of cestodes.

Other physical features:
- Ectothermic
- Heterothermic
- Bilateral symmetry
Life Cycle of Hymenolepis diminuta
LIFE CYCLE

The life cycle of *H. diminuta* involves Rodents (rats primarily) as the definitive host and beetles (flour and grain beetles, *Tribolium* spp. and *Tenebrio* spp., respectively) as the intermediate host.

1) The mature eggs are passed into the rat’s feces, and are ingested by the intermediate host (various arthropod adults or larvae).

2) Onchospheres are released from the eggs and penetrate the intestinal wall of the host.

3) Which develop into cysticercoid larvae. Species from the genus *Tribolium*, the cysticercoid larvae persist through the arthropod’s morphogenesis to adulthood. *H. diminuta* infection is acquired by the mammalian host after ingestion of an intermediate host carrying the cysticercoid larvae.

4) Humans can be accidentally infected through the ingestion of insects in pre-cooked cereals or other food items and directly from the environment. (e.g. oral exploration of the environment by children). After ingestion, the tissue of the infected arthropod is digested releasing the cysticercoid larvae in the stomach and small intestine. Eversion of the scolex.
(6) Occurs shortly after the cestode larva are released. Using the four suckers on the scolex, the parasite attaches to the small intestine wall. Maturation of the parasite occurs within 20 days and the adult worms can reach an average of 30 cm in length.

(6) Eggs are released in the small intestine from gravid proglottids.

(7) That disintegrate after breaking off from the adult worms. The eggs are expelled to the environment in the mammalian host's feces.

Additionally, more infections occur due to the mechanism of egg dispersal.

Species used as host:

- Rats *Rattus*
- Dogs *Canis*
- Arthropods *Arthropoda*
- Gran beetles *Cucujidae*
- Stored-grain beetles *Tribolium*
- Mealworm beetles *Tenebrio*
- Humans *Homo sapiens*
Figure A: Tribolium confusum, a common intermediate host for Hymenolepis spp. Tribolium and related genera breed in cereals, grains, and grain-based snack foods and are easily ingested by humans and rodents. Since these food products are usually not heated prior to consumption, cysticercoids within the beetles remain viable and infective. Image courtesy of Parasite and Diseases Image Library, Australia.

Figure B: Hymenolepis diminuta egg from stool sample (under ×40 magnification).

Figure C: Eggs of *H. diminuta* an unstained wet mount of concentrated stool. Image taken at 200x magnification.

Figure D: Higher magnification (400x) of one of the eggs in Figure C.

Figure E: Egg of *H. diminuta* in a wet mount stained with iodine. Four of the hooks are visible at this level of focus.
REPRODUCTION

Hymenolepis diminuta has both male and female reproductive organs in the same individual (Hermaphroditic). Each segment has one complete set of male and female sex organs. As the segments move towards the posterior end of the structure, first the male organs mature, and produce sperm that are stored until the maturation of the ovary. Once the adult _H. diminuta_ is embedded in the host, it can produce over 250,000 eggs per day. Thus, over a period of slightly over a year, a single tapeworm could produce a hundred million eggs and if all these eggs are reached maturity, it would be equal to 20 tons of tapeworm tissue. There is an extremely low chance for each egg to reach reproductive maturity and that is why _H. diminuta_ lays so many eggs.

Recent studies have been on the temperature tolerance of _H. diminuta_ eggs. The tapeworm's eggs survived at higher and lower temperatures and for longer periods of time than did adult beetles, indicating that the thermal tolerance of the eggs does not limit the parasite's distribution.
Behaviour

A behaviour modification of *H. diminuta* is thecestode's movement. The cestode has two types of muscle portions in the strobilus - the contractile myofibril and the non-contractile myocytes. The myocytes contain a nucleus, rough endoplasmic reticulum (RER), free ribosomes, a vesicular Golgi apparatus, few mitochondria, and abundant glycogen. Lipid is stored in them as well. The myofibril contain actin and myosin filaments which do the same contractions and make movement possible.

The contractile portions of the muscle cells are arranged in discrete bundles and propagation of contractions down the body make movement possible. The internal musculature of the scolex is complex, making the scolex extraordinarily mobile. The scolex has three distinct muscle types:

1. the peripheral myofibrils.
2. tentacle retractor muscles.
3. tentacle bulb muscles.

The bulb muscles are obliquely striated and have numerous motor end plates. Thus the muscular system of *H. diminuta* is complex.

Key behaviour: Parasite, motile, sedentary.
Communication & Perception

Cestodes in general have sensory organs in the scolex, which are attached to longitudinal nerves extending down the body. The nerves are attached to organs and the cestodes can detect tactile stimulation.

Communication channels: Tactile
Perception Channels: Tactile.

Ecosystem Roles

The adult worm lives in the intestine of its host, normally rats but also sometimes dogs and humans. H. diminuta passes through the required intermediate arthropod host as a juvenile, only when the intermediate host is injected by the definitive host will H. diminuta mature. The intermediate arthropod host is normally grain beetle, and injection of the intermediate host into the definitive host normally occurs in piles of grain, where both rats and beetles live.
HYMENOLEPIASIS

Hymenolepiasis is an infectious disease.

Symptoms
Hymenolepiasis does not always have symptoms, but they usually are described as abdominal pain, loss of appetite, itching around anus, irritability, diarrhea, nausea, anorexia.

Diagnosis
Diagnosis is made by the identification of **Ova** in stool samples. Egg counts in stool of over 10,000 eggs per gram are considered heavy infection. Concentration techniques and repeated examinations will increase the likelihood of detecting light infections.

Treatment
- **Praziquantel** - adult and children, 25mg/Kg in a single dose-therapy.
- **Niclosamide** - adult, 2gm in a single dose for 7 days. Children 11-34 kg, 1gm in a single dose on day 1 then 500 mg per day orally for 6 days.
Nitazoxanide

- Adults: 500 mg orally twice daily for 3 days.
- Children aged 12-47 months: 100 mg orally twice daily for 3 days.
- Children 4-11 years: 200 mg orally twice daily for 3 days.

Oral praziquantel is available for human use in the United States.

PREVENTION:

Good hygiene, public health, and sanitation programs and elimination of infected rats help to prevent the spread of hymenolepiasis. Preventing fecal contamination of food and water in institutions and crowded areas is of primary importance. General sanitation and rodent and insect control (especially control of fleas and grain insects) are also essential for prevention.