Solution: we have mean $\bar{x}=100$,

$$
\begin{aligned}
& \text { Variance }=35, \quad S k_{p}=0.2, \\
& \text { Now } S_{\text {k }}=\frac{\text { Mean -Mode }}{\sigma\left(V_{\text {nance }}\right.} \\
& 0.2=\frac{100-\text { Hole }}{\sqrt{35}} \quad \because S D^{2}=\text { Variance } \\
& 100-\text { Mode }=0.2 \times 5.92=1.184 \\
& \text { Mode }=100-1.184=98.816 \\
& \text { Mode }=3 \text { Median- } 2 \text { Mean } \Rightarrow 98.816 \\
& 98.816=3 \text { Median }-2 \times 100 \\
& 3 \text { Median }=298.816 \\
& \text { Median }=\frac{298.816}{3}=99.61 \\
& \text { Median }=99.61
\end{aligned}
$$

Question:- The sum of 20 , observations is 300 and sum of their squares is 5000 . The median is 15 . Find the Karl Pearson's coefficient of skewness.
Sol: Let ' x ' be the variable under consideration we have $n=20, \varepsilon x=300, \sum x^{2}=5000$, Median $=15$
\therefore mean $\bar{x}=\frac{\varepsilon x}{x}=\frac{300}{20}=15$

$$
\begin{aligned}
& \text { SD. }=\sqrt{\frac{\Sigma x^{2}}{x}-\left(\frac{\sum x}{x}\right)^{2}}=\sqrt{\frac{5000}{20}-\left(\frac{300}{20}\right)^{2}} \\
&=\sqrt{250-225}=\sqrt{25}=5
\end{aligned}
$$

\therefore Karl Pearson's cokfficient of skew nee

$$
=\frac{3(\text { mean }- \text { median })}{\text { S.D. }}=\frac{3(15-15)}{5}=\frac{0}{5}=0
$$

Sima.
Question: λ The first three central moments of a distribution are $0,15,-31$. Final the moment coefficient of Skewness.
Solution: we know that
Tr). Moment coefficient of Skewness $=\frac{\mu_{3}}{\sqrt{\mu_{2}^{3}}}= \pm \sqrt{B_{1}}$ [G.BTIU. 2009,2011]

$$
=\frac{-31}{\sqrt{15^{3}}}=-\frac{31}{58.09}=-0.53
$$

Question:- The first four moments of a distribution about the value 5 of the variable are $2,20,40$ and 50. Calculate the moment Coefficient of Skewness.
Sol. we have $A=5, \mu_{1}^{\prime}=2, \mu_{2}^{\prime}=20$

$$
\mu_{3}^{\prime}=40 \text { and } \mu_{4}^{\prime}=50
$$

Now $\quad \mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=20-(2)^{2}=16$

$$
\begin{aligned}
\mu_{3} & =\mu_{3}^{\prime}-3 \mu_{1}^{\prime} \mu_{2}^{\prime}+2 \mu_{1}^{3}=40-3(2)(20)+2(2)^{3} \\
& =40-120+16=-64
\end{aligned}
$$

$$
\begin{gathered}
\text { Moment coefficient of Skewness }=\frac{\mu_{3}}{\sqrt{\mu_{2}^{3}}} \\
=\frac{-64}{\sqrt{16^{3}}}=\frac{-64}{64}=-1 \\
\therefore S_{K P}=-1
\end{gathered}
$$

